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Overview

We present a framework for approximate statistical inference on a target observation model
F via inference on an observation model H with broader support which gives relatively easy
and efficient inference.

Setup

Suppose we observe the random variables Yi
i.i.d.∼ G for i = 1, . . . , n, where G is an unknown

probability distribution on Y .

We have

Yi
i.i.d.∼ G True Data Generating Process

Yi
i.i.d.∼ Fθ, θ ∈ Θ Target Model

Yi
i.i.d.∼ Hφ, φ ∈ Φ Approximation Model

We assume each Fθ has density fθ w.r.t. some σ-finite measure µ on the measurable space
(Y , F). We also assume each Hφ has density hφ w.r.t. some σ-finite measure ν on a space
(Y∗, F∗) where Y∗ ) Y , F∗ ) F . Finally, we assume these densities are continuous w.r.t θ

and φ, respectively, for each y ∈ Y . Note that this setup allows the densities (fθ, hφ) to be
either probability density functions (pdf) or probability mass functions (pmf).

Dominated Likelihood Approximation

Definition. In the setup above, if Assumptions 1 and 2 below are satisfied, we say that the
model Hφ is a dominated likelihood approximation (DLA) for the model Fθ.

Assumption 1: Broadened Support supp(Hφ) ) supp(Fθ), ∀φ ∈ Φ, θ ∈ Θ.

Assumption 2: Dominated Likelihood hφ(y) ≤ fφ(y) ∀ y ∈ Y , φ ∈ Φ.

Intentional model misspecification. We can often safely assume that the target model
has well-specified support

supp(Fθ) = supp(G), ∀θ ∈ Θ

in which case we have introduced an intentional model misspecification; we intentionally do
inference with a model that has inflated support.

Maximum Likelihood Inference

Result.

We can substitute the maximum likelihood parameters for H into F .

This strategy provably minimizes an upper bound on an error term between the true data
generating distribution G and the now tractable model.

Justification. We have

hφ(y) ≤ fφ(y) ∀ y ∈ Y , φ ∈ Φ Assumption 2

=⇒ EG[log hφ(Y )] < EG[log fφ(Y )] Monotonicity, Assumption 1

⇐⇒ EG[log g(Y )] − EG[log f (Y )] < EG[log g(Y )] − E[log hφ(Y )] algebra

⇐⇒ KL
(
G

∣∣∣∣ Fφ

)
< KL

(
G

∣∣∣∣ Hφ

)
def. KL

where for simplicity we have assumed that G has density g.

Now by classic statistical results, the quasi-maximum likelihood estimator (QMLE)

φ̂n , argmax
φ∈Φ

∑n
i=1 log hφ(Yi)

n

asymptotically minimizes KL
(
G

∣∣∣∣ Hφ

)
. Hence, substituting the quasi-MLE φ̂n from family

H into family F to obtain model F
φ̂n

can be justified since φ̂n is the parameter in Φ which

(asymptotically) minimizes an upper bound on KL
(
G

∣∣∣∣ Fφ

)
.

Bayesian Inference

Result

The posterior under likelihood H approximates the posterior under likelihood F

by maximizing a lower bound on the marginal likelihood of the target model F .

Justification. Given a prior distribution π on Φ, we obtain the following marginal density
relationship from Assumption 2:

pF (y) ,
∫

Φ
fφ(y) π(dφ) ≥

∫
Φ

hφ(y) π(dφ) , pH(y)

where we have used the same prior π on both Φ and Θ, using the implication from Assump-
tion 2 that Φ ⊆ Θ. Hence, for any probability distribution Q on Φ within some chosen family
Q, we have

log pF (y) ≥ log pH(y) ≥ ELBOH(Q)

As is well-known, when the family Q is unconstrained, ELBOH(Q) is optimized by the true
posterior under likelihood H . Thus, exact Bayesian inference for computing the posterior
on Φ using H can be seen as producing the probability distribution on Φ which maximizes
a lower bound on pF .

Examples

We may start with fixed Fθ and produce Hφ (as in 1), or start with fixed Hφ and produce Fθ

(as in 2).

Target Model (Fθ) Approximation Model (Hφ)
1 Truncated Gaussian Gaussian
2 Categorical-from-binary GLMs Independent Binary GLMs

Applications
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maximize bound on log h via CAVI (ours)
maximize log h via SGD
maximize log f via SGD

method train log f

CAVI on h 0.536
SGD on h 0.514
SGD on f 0.523

test log f

CAVI on h 0.515
SGD on h 0.489
SGD on f 0.469

Figure 1. Application 1: Truncated mixtures of Gaussians for geolocations in southern CA. Left: Ideal
model f truncates to the union of green rectangles (land area). Tractable model h (unconstrained mixture of
Gaussians) allocates mass to water (blue) or out-of-bounds (red). Ellipses show the 99% high-density-areas
of 4 Gaussian clusters fit to data using our CAVI approach. Right: Comparison of our approach to directly
maximizing ideal likelihood f : DLA yields comparable models in far less time. Table reports each method’s
mean log f over all examples.

Figure 2. Application 2: Scalable Bayesian Categorical GLM for predicting computer process starts.
Predicting a computer user’s process starts (with 1,553 categories, 1,553 covariates, and 17,724 examples) in
an cybersecurity intrusion application. We obtain quick inference by using CAVI on an independent binary
model H , and substituting the posterior expectation into a newly defined categorical-from-binary (CB)
model F which satisfies the DLA assumptions.
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