
Sampling and
MCMC Methods for
Bayesian Inference

1

Takeaways:
- If you have samples from a distribution, you know a lot about the

distribution!
- It’s not always straightforward to obtain samples, but there are

techniques that can help
- There are accessible computational tools that can help
- We can think geometrically about MCMC sampling
- We can recognize some problems that can emerge from sampling

2

Outline
Why sample?

Basic sampling algorithms

-Inverse cdf

-Rejection Sampling

MCMC Methods

-Idea and first example - Metropolis Algorithm

-Markov chains and stationary distributions

-Metropolis Hastings

-Gibbs Sampling

-Gradient-based sampling (HMC, NUTS)

Introduction to pymc3

Convergence diagnostics
3

Samples - what are they good for?

Sometimes it is hard to compute a distribution of interest (like the posterior
distribution p(𝜃| y) in a non-conjugate Bayesian model BUT still possible to
generate samples from that distribution

4

Samples - what are they good for?

5

Samples - what are they good for?

6

So samples are useful…. How do we get them?

Many methods, from simple ones to various MCMC approaches.

We’ll look at a bunch of methods in this workshop! Keep the big goal in mind.

7

How would you sample from… an exponential
distribution?

Assume we can generate (pseudo)-random samples from Uniform(0,1)
8

Sampling via the inverse cumulative density
function

Assume we can generate (pseudo)-random samples from Uniform(0,1)

cdf

pdf

9

Sampling via the inverse cumulative density
function

Assume we can generate (pseudo)-random samples from Uniform(0,1)
10

Sampling via the inverse cumulative density
function

Assume we can generate (pseudo)-random samples from Uniform(0,1)
11

Sampling via the inverse cumulative density
function

Assume we can generate (pseudo)-random samples from Uniform(0,1)
12

Sampling via the inverse cumulative density
function

Assume we can generate (pseudo)-random samples from Uniform(0,1)
13

Sampling via the inverse cumulative density
function

Assume we can generate (pseudo)-random samples from Uniform(0,1)
14

Sampling via the inverse cumulative density
function

Assume we can generate (pseudo)-random samples from Uniform(0,1)
15

Sampling via the inverse cumulative density
function - summary:

cdf

Inverse cdf

Take random uniform samples

Calculate where . These are the samples!
h^{-1}(u)

For exponential distribution:

16

Sampling via the inverse cumulative density
function - justification

Take random uniform samples

Calculate where
h^{-1}(u)

17

Sampling via the inverse cumulative density
function - summary:

Take random uniform samples

Calculate where
h^{-1}(u)

But, we can’t always calculate the inverse cdf!
18

Rejection Sampling - set up

Suppose…
-Want to sample from a distribution with pdf p(z); don’t have a simpler
approach

-Can evaluate p(z) up to some normalizing constant Zp. That, is can evaluate
p̃(z):

Recall:
probably
hard to evaluate19

Rejection Sampling - procedure
1. Choose a distribution q(z) that we can sample from and

constant k such that kq(z) > p̃(z) for all z
2. Sample z0 ~ q(z)
3. Sample u0 ~ Unif(0, kq(z0))
4. Keep z0 as a sample if u0 < p̃(z0), otherwise reject z0

Repeat until
have sufficient
samples

20

Rejection Sampling - procedure

Repeat until
have sufficient
samples

1. Choose a distribution q(z) that we can sample from and
constant k such that kq(z) > p̃(z) for all z

2. Sample z0 ~ q(z)
3. Sample u0 ~ Unif(0, kq(z0))
4. Keep z0 as a sample if u0 < p̃(z0), otherwise reject z0

21

Rejection Sampling - procedure

Repeat until
have sufficient
samples

1. Choose a distribution q(z) that we can sample from and
constant k such that kq(z) > p̃(z) for all z

2. Sample z0 ~ q(z)
3. Sample u0 ~ Unif(0, kq(z0))
4. Keep z0 as a sample if u0 < p̃(z0), otherwise reject z0

22

Rejection Sampling - procedure

Repeat until
have sufficient
samples

1. Choose a distribution q(z) that we can sample from and
constant k such that kq(z) > p̃(z) for all z

2. Sample z0 ~ q(z)
3. Sample u0 ~ Unif(0, kq(z0))
4. Keep z0 as a sample if u0 < p̃(z0), otherwise reject z0

23

Rejection Sampling - procedure

Repeat until
have sufficient
samples

1. Choose a distribution q(z) that we can sample from and
constant k such that kq(z) > p̃(z) for all z

2. Sample z0 ~ q(z)
3. Sample u0 ~ Unif(0, kq(z0))
4. Keep z0 as a sample if u0 < p̃(z0), otherwise reject z0

24

Rejection Sampling - procedure

Repeat until
have sufficient
samples

1. Choose a distribution q(z) that we can sample from and
constant k such that kq(z) > p̃(z) for all z

2. Sample z0 ~ q(z)
3. Sample u0 ~ Unif(0, kq(z0))
4. Keep z0 as a sample if u0 < p̃(z0), otherwise reject z0

25

Rejection Sampling - procedure

Repeat until
have sufficient
samples

1. Choose a distribution q(z) that we can sample from and
constant k such that kq(z) > p̃(z) for all z

2. Sample z0 ~ q(z)
3. Sample u0 ~ Unif(0, kq(z0))
4. Keep z0 as a sample if u0 < p̃(z0), otherwise reject z0

26

Rejection Sampling - procedure

Repeat until
have sufficient
samples

1. Choose a distribution q(z) that we can sample from and
constant k such that kq(z) > p̃(z) for all z

2. Sample z0 ~ q(z)
3. Sample u0 ~ Unif(0, kq(z0))
4. Keep z0 as a sample if u0 < p̃(z0), otherwise reject z0

27

Rejection Sampling - Key limitations
- Efficiency depends on good choice of k and q
- Becomes inefficient very quickly as the dimensionality of z

increases

28

Markov Chain Monte Carlo
Idea:

-generate one sample based on the previous one (form a Markov Chain)

-do this cleverly, so that samples are from distribution of interest

29

Markov Chain Monte Carlo - Metropolis Algorithm
Suppose we can evaluate p̃(z) = Zpp(z), the unnormalized pdf. Want samples.

Start with z0

Propose a new value for z* according to some proposal distribution

q(z | zτ) that is symmetric in the sense that q(zA | zB) = q (zB | zA).

Accept z* with probability:

If accept, set zτ+1 = z*. If not accept, set zτ+1 = zτ

30

Markov Chain Monte Carlo - Metropolis Algorithm
Start with z0

Propose a new value for z* according to some proposal distribution

q(z* | zτ) that is symmetric in the sense that q(zA | zB) = q (zB | zA).

Accept z* with probability:

If accept, set zτ+1 = z*. If not accept, set zτ+1 = zτ

z 31

Markov chains
Sequence where future is independent from the past, given the present:

Example: random walk

We call the transition probabilities

32

In matrix notation:

where

Markov chains
A Markov chain has a stationary distribution 𝜋 if:

or, in continuous state-space Markov chain, if:

33

Markov chains
In MCMC methods, we want to sample from some target distribution p

We construct our Markov process so that it will asymptotically reach p as its stationary distribution.

What do we need to show to guarantee that this occurs?

1. That p is stationary distribution. A sufficient condition (that’s often easier to work with than the
definition of a stationary distribution) is that detailed balance holds:

2. The stationary distribution is unique. This holds if the Markov chain satisfies the is (roughly
stated): aperiodic - gcd of number of steps to return to a state with positive probability is 1 and
positive recurrent - expected return time to a state is finite. For continuous state space, replace
state with set of states with positive probability)

34

MCMC - Metropolis Hastings Algorithm
Generalizes Metropolis algorithm by allowing non-symmetric proposal distributions

Start with z0

Propose a new value for z* according to some proposal distribution

q(z* | zτ), which is not necessarily symmetric

Accept z* with probability:

If accept, set zτ+1 = z*. If not accept, set zτ+1 = zτ

35

MCMC - Metropolis Hastings
Proving detailed balance: show

recall:

36

MCMC - Metropolis Hastings
-Step size can be a challenge! If we choose it to be too small, we may explore
too slowly to be efficient. If too large, we may reject too many samples to be
efficient. Want acceptance ratio to be neither too large nor too small.

-Also, target distribution can have different standard deviations in different
directions, another challenge if we use something like an isotropic Gaussian as
proposal distribution

-We may want to discard the earliest samples in the chain (“burn-in” or
“warm-up”)

37

MCMC - Gibbs Sampling
-Iterate through each parameter, fixing all other parameters and sample from
the conditional.

Fig 11.11 from Pattern Recognition and
Machine Learning, Christopher Bishopnote that we’re also typically conditioning on data

38

MCMC - Gibbs Sampling
Conditionals are sometimes nice to calculate in hierarchical models…. e.g.:

N

39

N

Gamma and poisson pdfs

Combining terms and
dropping factors that don’t
depend on beta or lambda

likelihood prior

40

MCMC - Gibbs Sampling - additional notes
-Can be an efficient choice if if you can actually get all the conditionals you
need

-Gibbs sampling is actually a special case of Metropolis Hastings (see e.g PRML
, Bishop, Section 11.3)

-Augmenting by including auxiliary variables can be (surprisingly?) useful, to
make sampling easier

-Could use Metropolis-within-Gibbs if one or some of the conditionals are
hard to sample from

41

Gradient-based MCMC methods - Hamiltonian MC
-Want a method that can propose samples that are far away from current,
BUT still have a high probability of acceptance

-Will introduce some auxiliary variables and use Hamiltonian dynamics to
generate proposals (parameters as position, auxiliary momentum variables)

-Flexible and efficient sampling method for continuous distributions. Need to
be able to evaluate (log) density function (up to normalizing constant), and to
compute partial derivatives of the log density

42

Figures 4, 5 from Neal, 2011

43

Gradient-based MCMC methods - HMC
-Position variables (q) are all the variables of interest (i.e. parameters in our Bayesian model)

-Momentum variables (p): auxiliary variables that we introduce; same dimensionality as q

Consider system described by Hamiltonian H(p, q), where p and q are each functions of time and Hamilton’s equations hold:

Potential energy:
negative log probability

Kinetic energy: usually use

(-log p of mean-0 Gaussian)

Typically for HMC, assume:

These equations tell us how
the system evolves in time
from a starting point along
trajectories in p,q space

Will use points along these
trajectories as proposals in a
Metropolis step!

44

-Position variables (q) are all the variables of interest (i.e. parameters in our Bayesian model)

-Momentum variables (p): auxiliary variables that we introduce; same dimensionality as q

Consider system described by Hamiltonian H(p, q), where p and q are each functions of time and Hamilton’s equations hold:

Potential energy:
negative log probability

Kinetic energy: usually use

(-log p of mean-0 Gaussian)

Typically for HMC, assume: Alternate:
1. Draw new momentum

variables
2. Metropolis updates, using
Hamiltonian dynamics to
propose new state (p*, q*)

45

-Position variables (q) are all the variables of interest (i.e. parameters in our Bayesian model)

-Momentum variables (p): auxiliary variables that we introduce; same dimensionality as q

Consider system described by Hamiltonian H(p, q), where p and q are each functions of time and Hamilton’s equations hold:

Potential energy:
negative log probability

Kinetic energy: usually use

(-log p of mean-0 Gaussian)

Typically for HMC, assume: Alternate:
1. Draw new momentum

variables
2. Metropolis updates, using
Hamiltonian dynamics to
propose new state (p*, q*)

And Hamiltonian defines a joint probability:

So, this joint probability is constant along a time trajectory

So, if we followed a trajectory exactly, our Metropolis step would accept with probability 1, since the
proposed state would have same prob as initial.
In reality, we won’t always accept, because we only approximate the trajectory

Can show:

if

46

To compute (approx.) trajectories, need to integrate numerically. Will take L steps of size 𝜺. Easiest
way could be Euler’s method (alternate following the derivatives of p and q along a step of size 𝜺:

Euler’s method not satisfactory here; instead use “leapfrog method” - half step momentum, full step
position, another half step momentum.

Need to choose L, 𝜺 - they matter

Figure 1 from Neal, 2011
Position variable a zero mean gaussian

47

Gradient-based MCMC methods - No U-Turn Sampler
-Extension of HMC

-Big idea: choose path lengths adaptively; don’t need to choose L (number of
steps in the integrator)

See:

Hoffman, Matthew D., and Andrew Gelman. "The No-U-Turn sampler:
adaptively setting path lengths in Hamiltonian Monte Carlo." J. Mach. Learn.
Res. 15, no. 1 (2014): 1593-1623.

48

HMC - Two excellent resources for learning more

-Neal, Radford. MCMC using Hamiltonian dynamics, (2011). Chapter 5 of the
Handbook of Markov Chain Monte Carlo. https://arxiv.org/pdf/1206.1901.pdf

-Betancourt, Michael. A conceptual introduction to Hamiltonian Monte Carlo.
(2018) https://arxiv.org/pdf/1701.02434.pdf

49

https://arxiv.org/pdf/1206.1901.pdf

MCMC with PyMC3
-PyMC3 is an open source Python probabilistic programming library

-Makes it easy to specify a model and fit it using algorithms like HMC/NUTS

-Integrates nicely with tools for assessing your models and results

-Documentation here: https://docs.pymc.io/ (including Quickstart:
https://docs.pymc.io/pymc-examples/examples/pymc3_howto/api_quickstart.
html)

-Other probabilistic programming libraries exist. E.g. Stan is very popular and
an excellent choice especially if you are an R user.

See examples in colab

50

https://docs.pymc.io/

Convergence Diagnostics - traceplots

51

https://canyon289.github.io/bayesian-model-evaluation/lessonplans/mcmc_basics/#/14

“Fuzzy caterpillar”
^ an oversimplification, but potentially a helpful one

Convergence Diagnostics - R-hat/Gelman-Rubin stat
-between-chain variance to within-chain variance, after running multiple
chains (close to 1 is good)

52

Convergence Diagnostics - effective sample size
-estimate how many independent samples (that we’d want in an ideal world)
would have the same information as the dependent draws (that we have)

Model checking
-e.g. Prior and posterior predictive checks

More on model checking, convergence diagnostics
https://github.com/fonnesbeck/Bayes_Computing_Course/blob/master/noteb
ooks/Section3_2-Model-Checking.ipynb

https://mc-stan.org/misc/warnings.html

Gelman et al., Bayesian Data Analysis, 3rd. Ed., Ch. 6, 11.4

53

More on Bayesian workflow:
Gelman, A. et al., Bayesian Workflow (2020)
https://arxiv.org/pdf/2011.01808.pdf

https://github.com/fonnesbeck/Bayes_Computing_Course/blob/master/notebooks/Section3_2-Model-Checking.ipynb
https://github.com/fonnesbeck/Bayes_Computing_Course/blob/master/notebooks/Section3_2-Model-Checking.ipynb
https://mc-stan.org/misc/warnings.html

