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Takeaways:
- If you have samples from a distribution, you know a lot about the 

distribution!
- It’s not always straightforward to obtain samples, but there are 

techniques that can help
- There are accessible computational tools that can help
- We can think geometrically about MCMC sampling
- We can recognize some problems that can emerge from sampling
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Outline
Why sample?

Basic sampling algorithms

-Inverse cdf

-Rejection Sampling

MCMC Methods

-Idea and first example - Metropolis Algorithm

-Markov chains and stationary distributions

-Metropolis Hastings

-Gibbs Sampling

-Gradient-based sampling (HMC, NUTS)

Introduction to pymc3

Convergence diagnostics
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Samples - what are they good for?

Sometimes it is hard to compute a distribution of interest (like the posterior 
distribution p(𝜃| y) in a non-conjugate Bayesian model BUT still possible to 
generate samples from that distribution
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So samples are useful…. How do we get them?

Many methods, from simple ones to various MCMC approaches.

We’ll look at a bunch of methods in this workshop! Keep the big goal in mind.
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How would you sample from… an exponential 
distribution?

Assume we can generate (pseudo)-random samples from Uniform(0,1)
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Sampling via the inverse cumulative density 
function

Assume we can generate (pseudo)-random samples from Uniform(0,1)

cdf

pdf
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Sampling via the inverse cumulative density 
function - summary:

cdf

Inverse cdf

Take random uniform samples 

Calculate where     . These are the samples!  
h^{-1}(u)

For exponential distribution:
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Sampling via the inverse cumulative density 
function - justification

Take random uniform samples 

Calculate where  
h^{-1}(u)
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Sampling via the inverse cumulative density 
function - summary:

Take random uniform samples 

Calculate where  
h^{-1}(u)

But, we can’t always calculate the inverse cdf!
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Rejection Sampling - set up

Suppose…
-Want to sample from a distribution with pdf p(z); don’t have a simpler 
approach

-Can evaluate p(z) up to some normalizing constant Zp. That, is can evaluate 
p̃(z):

Recall:
probably
hard to evaluate19



Rejection Sampling - procedure
1. Choose a distribution q(z) that we can sample from and 

constant k such that kq(z) > p̃(z) for all z
2. Sample z0 ~ q(z)
3. Sample u0 ~ Unif( 0, kq(z0) )
4. Keep z0 as a sample if u0 < p̃(z0), otherwise reject z0

Repeat until
have sufficient
samples
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Rejection Sampling - Key limitations
- Efficiency depends on good choice of k and q
- Becomes inefficient very quickly as the dimensionality of z 

increases
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Markov Chain Monte Carlo
Idea: 

-generate one sample based on the previous one (form a Markov Chain)

-do this cleverly, so that samples are from distribution of interest
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Markov Chain Monte Carlo - Metropolis Algorithm
Suppose we can evaluate p̃(z) = Zpp(z), the unnormalized pdf. Want samples. 

Start with z0

Propose a new value for z* according to some proposal distribution 

q(z | zτ ) that is symmetric in the sense that q(zA | zB ) = q (zB | zA).

Accept z* with probability:

If accept, set  zτ+1 = z*. If not accept, set zτ+1 =  zτ
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Markov Chain Monte Carlo - Metropolis Algorithm
Start with z0

Propose a new value for z* according to some proposal distribution 

q(z* | zτ ) that is symmetric in the sense that q(zA | zB ) = q (zB | zA).

Accept z* with probability:

If accept, set  zτ+1 = z*. If not accept, set zτ+1 =  zτ
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Markov chains
Sequence where future is independent from the past, given the present:

Example: random walk

We call                                                                   the transition probabilities
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In matrix notation:

where

Markov chains
A Markov chain has a stationary distribution 𝜋 if:

or, in continuous state-space Markov chain, if:
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Markov chains
In MCMC methods, we want to sample from some target distribution p

We construct our Markov process so that it will asymptotically reach p as its stationary distribution.

What do we need to show to guarantee that this occurs?

1. That p is stationary distribution. A sufficient condition (that’s often easier to work with than the 
definition of a stationary distribution) is that detailed balance holds:

2. The stationary distribution is unique. This holds if the Markov chain satisfies the is (roughly 
stated): aperiodic - gcd of number of steps to return to a state with positive probability is 1 and 
positive recurrent - expected return time to a state is finite. For continuous state space, replace 
state with set of states with positive probability )
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MCMC - Metropolis Hastings Algorithm
Generalizes Metropolis algorithm by allowing non-symmetric proposal distributions

Start with z0

Propose a new value for z* according to some proposal distribution 

q(z* | zτ ), which is not necessarily symmetric

Accept z* with probability:

If accept, set  zτ+1 = z*. If not accept, set zτ+1 =  zτ
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MCMC - Metropolis Hastings
Proving detailed balance: show

recall:
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MCMC - Metropolis Hastings
-Step size can be a challenge! If we choose it to be too small, we may explore 
too slowly to be efficient. If too large, we may reject too many samples to be 
efficient. Want acceptance ratio to be neither too large nor too small.

-Also, target distribution can have different standard deviations in different 
directions, another challenge if we use something like an isotropic Gaussian as 
proposal distribution

-We may want to discard the earliest samples in the chain (“burn-in” or 
“warm-up”)
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MCMC - Gibbs Sampling
-Iterate through each parameter, fixing all other parameters and sample from 
the conditional.

Fig 11.11 from Pattern Recognition and 
Machine Learning, Christopher Bishopnote that we’re also typically conditioning on data
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MCMC - Gibbs Sampling
Conditionals are sometimes nice to calculate in hierarchical models…. e.g.:

N
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N

Gamma and poisson pdfs

Combining terms and 
dropping factors that don’t 
depend on beta or lambda

likelihood prior
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MCMC - Gibbs Sampling - additional notes
-Can be an efficient choice if if you can actually get all the conditionals you 
need

-Gibbs sampling is actually a special case of Metropolis Hastings (see e.g PRML 
, Bishop, Section 11.3)

-Augmenting by including auxiliary variables can be (surprisingly?) useful, to 
make sampling easier

-Could use Metropolis-within-Gibbs if one or some of the conditionals are 
hard to sample from
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Gradient-based MCMC methods - Hamiltonian MC
-Want a method that can propose samples that are far away from current, 
BUT still have a high probability of acceptance

-Will introduce some auxiliary variables and use Hamiltonian dynamics to 
generate proposals (parameters as position, auxiliary momentum variables)

-Flexible and efficient sampling method for continuous distributions. Need to 
be able to evaluate (log) density function (up to normalizing constant), and to 
compute partial derivatives of the log density
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Figures 4, 5 from Neal, 2011
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Gradient-based MCMC methods - HMC
-Position variables (q) are all the variables of interest (i.e. parameters in our Bayesian model) 

-Momentum variables (p): auxiliary variables that we introduce; same dimensionality as q

Consider system described by Hamiltonian H(p, q), where p and q are each functions of time and Hamilton’s equations hold:

Potential energy: 
negative log probability

Kinetic energy: usually use

(-log p of mean-0 Gaussian)

Typically for HMC, assume:

These equations tell us how 
the system evolves in time 
from a starting point along 
trajectories in p,q space

Will use points along these 
trajectories as proposals in a 
Metropolis step!
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-Position variables (q) are all the variables of interest (i.e. parameters in our Bayesian model) 

-Momentum variables (p): auxiliary variables that we introduce; same dimensionality as q

Consider system described by Hamiltonian H(p, q), where p and q are each functions of time and Hamilton’s equations hold:

Potential energy: 
negative log probability

Kinetic energy: usually use

(-log p of mean-0 Gaussian)

Typically for HMC, assume: Alternate:
1. Draw new momentum 

variables
2. Metropolis updates, using 
Hamiltonian dynamics to 
propose new state (p*, q*)

And Hamiltonian defines a joint probability: 

So, this joint probability is constant along a time trajectory

So, if we followed a trajectory exactly, our Metropolis step would accept with probability 1, since the 
proposed state would have same prob as initial.
In reality, we won’t always accept, because we only approximate the trajectory

Can show:

if
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To compute (approx.) trajectories, need to integrate numerically. Will take L steps of size 𝜺. Easiest 
way could be Euler’s method (alternate following the derivatives of p and q along a step of size 𝜺:

Euler’s method not satisfactory here; instead use “leapfrog method” - half step momentum, full step 
position, another half step momentum.

Need to choose L, 𝜺 - they matter

Figure 1 from Neal, 2011
Position variable a zero mean gaussian
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Gradient-based MCMC methods - No U-Turn Sampler
-Extension of HMC

-Big idea: choose path lengths adaptively; don’t need to choose L (number of 
steps in the integrator)

See:

Hoffman, Matthew D., and Andrew Gelman. "The No-U-Turn sampler: 
adaptively setting path lengths in Hamiltonian Monte Carlo." J. Mach. Learn. 
Res. 15, no. 1 (2014): 1593-1623.
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HMC - Two excellent resources for learning more

-Neal, Radford. MCMC using Hamiltonian dynamics, (2011). Chapter 5 of the 
Handbook of Markov Chain Monte Carlo. https://arxiv.org/pdf/1206.1901.pdf

-Betancourt, Michael. A conceptual introduction to Hamiltonian Monte Carlo. 
(2018) https://arxiv.org/pdf/1701.02434.pdf
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MCMC with PyMC3
-PyMC3 is an open source Python probabilistic programming library

-Makes it easy to specify a model and fit it using algorithms like HMC/NUTS

-Integrates nicely with tools for assessing your models and results

-Documentation here: https://docs.pymc.io/ (including Quickstart: 
https://docs.pymc.io/pymc-examples/examples/pymc3_howto/api_quickstart.
html)

-Other probabilistic programming libraries exist. E.g. Stan is very popular and 
an excellent choice especially if you are an R user.

See examples in colab

50

https://docs.pymc.io/


Convergence Diagnostics - traceplots
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https://canyon289.github.io/bayesian-model-evaluation/lessonplans/mcmc_basics/#/14

“Fuzzy caterpillar”
^ an oversimplification, but potentially a helpful one



Convergence Diagnostics - R-hat/Gelman-Rubin stat
-between-chain variance to within-chain variance, after running multiple 
chains (close to 1 is good)
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Convergence Diagnostics - effective sample size
-estimate how many independent samples (that we’d want in an ideal world) 
would have the same information as the dependent draws (that we have)

Model checking
-e.g. Prior and posterior predictive checks



More on model checking, convergence diagnostics
https://github.com/fonnesbeck/Bayes_Computing_Course/blob/master/noteb
ooks/Section3_2-Model-Checking.ipynb

https://mc-stan.org/misc/warnings.html

Gelman et al., Bayesian Data Analysis, 3rd. Ed., Ch. 6, 11.4
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More on Bayesian workflow:
Gelman, A. et al., Bayesian Workflow (2020) 
https://arxiv.org/pdf/2011.01808.pdf

https://github.com/fonnesbeck/Bayes_Computing_Course/blob/master/notebooks/Section3_2-Model-Checking.ipynb
https://github.com/fonnesbeck/Bayes_Computing_Course/blob/master/notebooks/Section3_2-Model-Checking.ipynb
https://mc-stan.org/misc/warnings.html

