A look at Bayesian Deep Learning

Kyle Heuton 6/11/2021

Do you care about uncertainty?

All causes Both sexes, Age-standardized, 2040, Deaths per 100,000

The problem

What Previous approaches have been tried?

$$F_g = \frac{Gm_1m_2}{r^2}$$

Try Bayesian Deep Learning

Bayesian Deep Learning Marginalizes over parameters to give:

- Accurate uncertainty quantification
- Out-of-distribution generalization

A Bayesian neural network predicts the dissolution of compact planetary systems

Miles Cranmer^{a,†}, Daniel Tamayo^a, Hanno Rein^{b,c}, Peter Battaglia^d, Samuel Hadden^e, Philip J. Armitage^{f,g}, Shirley Ho^{g,a,h}, and David N. Spergel^{g,a}

What is deep learning

Hidden layer

Input layer

$$\begin{aligned} \mathbf{H} &= \sigma(\mathbf{X}\mathbf{W}^{(1)} + \mathbf{b}^{(1)}), \\ \mathbf{O} &= \mathbf{H}\mathbf{W}^{(2)} + \mathbf{b}^{(2)}. \end{aligned}$$

Can train these parameters with Stochastic Gradient

Descent

Miles's Model

How do you do Bayesian deep learning?

$$p(y|x,\mathcal{D}) = \int p(y|x,w)p(w|\mathcal{D})dw$$

$$p(w|\mathcal{D}) = rac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$$

$$p(w|\mathcal{D}) = rac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$$

$$p(w|\mathcal{D}) = rac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$$

$$\hat{w} = rg \max_{w} \log p(w|\mathcal{D}) = rg \max_{w} (\log p(\mathcal{D}|w) + \log p(w) + \mathrm{constant}).$$

$$p(w|\mathcal{D}) = rac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$$

$$\hat{w} = rg \max_{w} \log p(w|\mathcal{D}) = rg \max_{w} (\log p(\mathcal{D}|w) + \log p(w) + \mathrm{constant}).$$

$$p(w|\mathcal{D}) = rac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$$

$$\mathcal{F}(\boldsymbol{\theta}) = \underset{W \sim q_{\boldsymbol{\theta}}}{\mathbb{E}} [\log p(\mathcal{D} \mid W)] - D_{\mathrm{KL}}(q_{\boldsymbol{\theta}} \parallel p).$$

$$p(w|\mathcal{D}) = rac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$$

Deep Ensembles \circ VI \circ Multi-SWAG

Posterior is a mixture of Gaussians

MultiSWAG is easy

What does Bayesian Deep Learning get you?

Model	RMSE	Classif. accur.	Bias [†] (4, 5)	Bias (8, 9)
Obertas et al. (2017)	2.12	0.628	1.04	-1.71
Petit et al. (2020)	3.22	0.530	3.99	0.54

Bayesian Deep Learning can be robust to out-of-distribution data

Resources

- Notebook building a Bayesian Neural Net with Bayes by backprop (warning, old tensorflow):
 https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/dev/bayesian-neural-networks/bayesian-neural-networks.ipynb
- Complicated Notebook for BNNs and uncertainty estimates:
 https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/dev/noise-contrastive-priors/ncp.ip ynb
- Notebook building a Bayesian Neural Net with PyMC3 and VI:
- https://docs.pymc.io/notebooks/bayesian_neural_network_advi.html
- The Case for Bayesian Deep Learning: https://cims.nyu.edu/~andrewgw/caseforbdl/
- Bayesian Deep Learning and a Probabilisitic Perspective of Generalization: https://arxiv.org/abs/2002.08791
- NeurIPS Bayesian Deep Learning workshop: http://bayesiandeeplearning.org/
- Approximate Bayesian Inference Competition: https://izmailovpavel.github.io/neurips_bdl_competition/
- "Hands-on" Bayesian Deep Learning Tutorial https://arxiv.org/pdf/2007.06823.pdf
- Dropout as Bayesian Deep Learning- http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
- Good, interactive deep learning book: http://d2l.ai/index.html
- Good, conceptual deep learning book: https://www.deeplearningbook.org/