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Some motivations for the normal

• Maximum entropy among all distributions with a given mean µ and

variance Σ.

• Characterized by independence of sample mean and sample variance.

(Bayesian take: ask if your beliefs about the sample mean are independent from

those about the sample variance.)

• Sample averages are generally approximately normally distributed

due to the Central Limit Theorem.

• Sufficient statistics are sample mean and variance; so will

consistently estimate population mean and variance even for

non-normal distributions.
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Why Bayesian normal?

• Prior information often exists and can be taken into account.

• Population-level info (Previous example: disease prevalence. Forthcoming example: biometrics and

PIMA Indians)

• Nature (e.g. support) of data (Forthcoming example: reading comprehension)

• ML estimates of covariance matrices can have large variance.

• Problem can be especially bad in certain contexts ( e.g., small data,

high-dimensions, missing data)

• Spherical prior provides regularization

• Posterior still asymptotically concentrates around maximum

likelihood (ML) solution

• Inference can be as easy or easier than in frequentist models

• Easy, cheap updates (esp. when using a conjugate prior)

• Supports online learning

• Fits nicely in more complex models
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Review: Exponential families

We have observed that the Bernoulli and the Poisson distributions are

both exponential families.

Exponential family

An exponential family is a set of probability distributions whose

probability density functions have the following form

p(x | θ) = h(x) exp{η(θ)T t(x)− a(θ)} (1)

where we refer to h as the base measure, η as the natural parameter, t

as the sufficient statistics, and a as the log normalizer.
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Multivariate normal is an exponential family

We can write the density of a multivariate normal N (µ,Σ) distribution in
exponential form. (Try it!)

p(x | µ,Σ) = (2π)−d/2|Σ|−1/2 exp

{
−

1

2
(x − µ)T Σ−1(x − µ)

}
= (2π)−d/2 exp

{
−

1

2
xT Σ−1x︸ ︷︷ ︸

− 1
2

vec(Σ−1)
T

vec(xxT )

+ (Σ−1µ)
T

x − 1
2 µ

T Σ−1µ + 1
2 log |Σ−1|

}

(2)

Note: the underbrace representation is given by xT Σ−1x = tr(xT Σ−1x) = tr(Σ−1xxT ) = vec(Σ−1)T vec(xxT ).

• Natural parameter: η(µ,Σ) =
(
− 1

2 vec(Σ−1), Σ−1µ
)

,

• Sufficient statistics: t(x) =
(

vec(xxT ), x
)

,

• Log normalizer: a(µ,Σ) = − 1
2 µΣ−1µ + 1

2 log |Σ−1| .

• Base measure: h(x) = (2π)−d/2
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Qualitative points

The natural parametrization of the MVN

From Equation (2), we see that that the natural parameters of the

MVN are

• the precision Σ−1 , and

• the precision-weighted mean Σ−1µ.

Are you exponentiating a quadratic?

We also see that if a random vector x has a density on Rd that satisfies

p(x) ∝ exp{−1

2
xTAx + xTb}

for some matrix A and vector b, then x must be multivariate normal.

Moreover its natural parameters are precision A and precison-weighted

mean b. In other words, the covariance is A−1 and the mean is A−1b.
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Self-help guide for deriving Gibbs samplers
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Inverse Wishart Distribution

The Inverse Wishart is a distribution on symmetric, positive definite

matrices. The Inverse Wishart distribution, denoted W−1(ν,Ψ), has

density

p(Σ) ∝ |Σ|−(ν+d+1)/2 exp

[
−1

2
tr(Σ−1Ψ)

]
(3)

where Σ � 0 and ν > d − 1 to have a proper prior. The expected value

of an Inverse Wishart random variable parametrized as in (3) is given by

E[Σ] = Ψ
ν−d−1 .

Interpreting the parameters of the Inverse Wishart

Note that the parameters of the Inverse Wishart can be interpreted (as per

conjugacy; we will see this below) in the following way: the covariance was estimated

from ν observations with a residual sum of squares (a.k.a. sum of

pairwise deviation products) Ψ.
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Inverse Wishart Distribution

Image Credit: Michael Hughes, Tufts University
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Sampling from the Inverse Wishart

A sample Σ from the W−1(ν,Ψ) distribution can be obtained by the

following scheme:

1. Sample z1, ..., zν
iid∼ N (0,Ψ−1)

2. Calculate ZTZ =
∑ν

i=1 z izT
i .

3. Set Σ = (ZTZ )−1.

The intuition is that the Inverse Wishart models covariance matrices as

an inverse sum of squares.

13



Conjugate inference
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A fully conjugate formulation

Since the MVN is an EF, we can form a fully conjugate model.

Fully conjugate Bayesian MVN (has closed-form posteriors and predictive posteriors!)

Given observations x := (x1, . . . xN), where each x i ∈ Rd , we take

µ,Σ ∼ NIWd(α0,µ0, ν0,Ψ0)

x i | µ,Σ
iid∼ Nd(µ,Σ), i = 1, ...,N

The Normal-Inverse-Wishart prior

µ,Σ ∼ NIWd(α0,µ0, ν0,Ψ0)

which means

Σ ∼ W−1
d (ν0,Ψ0)

µ | Σ ∼ Nd(µ0,
1

α0
Σ)
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Application: Modeling typing dynamics

See powerpoint slides.
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Semi-conjugate inference
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Semi-conjugate Bayesian normal

Semi-conjugate Bayesian MVN

Consider the following model with a normal sampling distribution and

semi-conjugate prior

µ ∼ Nd(m0,V 0)

Σ ∼ W−1(ν0,Ψ0)

x i | µ,Σ
iid∼ Nd(µ,Σ), i = 1, ...,N

We define x := (x1, . . . xN), where each x i ∈ Rd .
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Semi-conjugate models: Gist

Main idea: A family of prior distributions for a parameter is called

semi-conjugate if the conditional posterior distribution (often called the

complete conditional), given the data and all other parameters in the

model, is also in that family.

Comparison
Fully conjugate model

• (µ,Σ) | rest is

Normal-Inverse-Wishart

Semi-conjugate model

• µ | rest is Normal

• Σ | rest is Inverse Wishart

Relative evaluation of semi-conjugate model

7 lacks closed-form posterior updating

3 more expressive

3 easier to embed in more complex models
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Semi-conjugate models: Definition

Review: Conjugate models

Conjugacy was defined as follows (gelman2013bayesian) . If F is a class of

sampling distributions and P is a class of prior distributions for θ, then

the class P is conjugate for F if

p( θ | y ) ∈ P for all p(· | θ ) ∈ F and p(·) ∈ P

Semi-conjugate models

Semi-conjugate (sometimes called conditionally-conjugate) models can

be defined similarly (gelman2013bayesian) . If F is a class of sampling

distributions and P is a class of prior distributions for θ | φ, then the

class P is conditionally conjugate for F if

p( θ | φ , y ) ∈ P for all p(· | θ , φ ) ∈ F and p(· | φ ) ∈ P

20



We ♥ semi-conjugacy

In general, semi-conjugate models do not have closed-form posteriors.

Why are they of interest?

The posterior distributions are easily approximated

• with Gibbs sampling, by sampling from the complete conditionals

• with mean-field variational inference, by taking variational

expectations of the natural parameters of the complete conditional.
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The complete conditional for µ

We use the exponential family representation of the MVN to represent the prior in terms of its

natural parameters

p(µ) ∝ exp

{
−

1

2
µ

T
(

V−1
0︸︷︷︸

prior precision

)
µ + µ

T
(

V−1
0 m0︸ ︷︷ ︸

prior precision-weighted mean

)}
(4)

And similarly, we write the likelihood L(µ) = p(y | µ) =
∏n

i=1 p(y i | µ) as

L(µ) ∝ exp

{
−

1

2

n∑
i=1

(x i − µ)T Σ−1(x i − µ)

}

= exp

{
−

1

2
µ

T
(

nΣ−1︸ ︷︷ ︸
data precision

)
µ + µ

T
(

Σ−1nx̄︸ ︷︷ ︸
data precision-weighted mean

)}
(5)

Can you finish the derivation? (Hint: Remember Jimi!)

By Bayes’ law, and combining like terms,

p(µ | x,Σ) ∝ p(µ)︸︷︷︸
prior

p(x | µ,Σ)︸ ︷︷ ︸
likelihood

= exp

{
−

1

2
µ

T
(

V−1
0 + nΣ−1︸ ︷︷ ︸

posterior precision

)
µ + µ

T
(

V 0m0 + Σ−1nx̄︸ ︷︷ ︸
posterior precision-weighted mean

)}

which reveals that the posterior is normal, along with the particular form of its parameters
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Complete conditionals for the Bayesian MVN

The complete conditions under natural parametrization

µ | Σ, x ∼ Nd (m,V )

where

V−1︸ ︷︷ ︸
posterior precision

= V−1
0︸ ︷︷ ︸

prior precision

+ nΣ−1︸ ︷︷ ︸
data precision

V−1m︸ ︷︷ ︸
posterior precision-weighted mean

= V−1
0 m0︸ ︷︷ ︸

prior precision-weighted mean

+ nΣ−1x̄︸ ︷︷ ︸
data precision-weighted mean

and

Σ | µ, x ∼ W−1(ν,Ψ)

where

ν︸︷︷︸
posterior sample size

= ν0︸︷︷︸
prior sample size

+ n︸︷︷︸
sample size

Ψ︸︷︷︸
posterior RSS

= Ψ0︸︷︷︸
prior RSS

+
n∑

i=1

(x i − µ)(x i − µ)T︸ ︷︷ ︸
data RSS

Note: RSS = Residual Sum of Squares
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Gibbs Sampler (in standard parametrization)

We sample from the posterior by iteratively sampling from the complete
conditionals:

µ | Σ, x ∼ Nd (m,V )

where

V =

(
V−1

0︸ ︷︷ ︸
prior precision

+ nΣ−1︸ ︷︷ ︸
data precision

)−1

m = V
(

V−1
0 m0︸ ︷︷ ︸

prior precision-weighted mean

+ nΣ−1x̄︸ ︷︷ ︸
data precision-weighted mean

)

and

Σ | µ, x ∼ W−1(ν,Ψ)

where

ν = ν0 + n

Ψ = Ψ0 +
N∑
i=1

(x i − µ)(x i − µ)T

24



Complete conditionals: Interpretation

These complete conditionals have nice interpretations:

• Complete conditional for (µ | Σ, x): On the precision scale, V is

the sum of the prior precision matrix V−1
0 and the data precision

matrix (which is N copies of the precision for each observation,

Σ−1). Similarly, m is the precision-weighted convex combination of

m0, the prior mean, and the empirical average, x̄ .

• Complete conditional for (Σ | µ, x): The covariance was estimated

from ν observations with a sum of pairwise deviation products Ψ.

25



Application: Reading

Comprehension
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See ipython notebook.
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Missing data and imputation
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Pima Dataset

Figure 1: Univariate histograms and bivariate scatterplots for four variables taken
from a dataset involving health-related measurements on 200 women of Pima Indian
heritage living near Phoenix, Arizona. The four variables are glu (blood plasma glucose

concentration), bp (diastolic blood pressure), skin (skin fold thickness), and bmi (body mass

index).
30



Pima Dataset

Figure 2: Entries for the first ten subjects in the dataset. The NA’s stand for “not

available.”
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Description of problem

How to do parameter estimation in the presence of missing data?

We cannot do parameter estimation, because we cannot compute the likelihood∏n
i=1 p(y i | θ).

Two common approaches taken by software packages:

1. Throw away all subjects with missing data

7 Discards a potentially large amount of useful information.

2. Impute the population mean or some other fixed value.

7 Assumes certainty about these values, when in fact we have not observed

them.
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Missing at random (MAR)

Let O i = (O1, ...,Op)T be a binary vector such that

• Oij = 1 =⇒ Yij is observed

• Oij = 0 =⇒ Yij is missing

Definition

We say the missing data are missing at random if O i and Y i are

conditionally independent given the model parameters θ and the

distribution of O i does not depend on θ.

Remark. This is one of the three types of missingness. In gist:

• Missing completely at random (MCAR) - missingness is independent of all data

• Missing at random (MAR) - missingness is independent of observed data

• Missing not at random (MNAR) - missingness depends on missing values (and perhaps

observed data)
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The likelihood in the presence of MAR data

When the data is missing at random, the sampling probability (density)

for the data from observational unit i is given by

p(o i , {yij : oij = 1} | θ)
(1)
= p(o i ) p({yij : oij = 1} | θ)

= p(o i )

∫
p(yi1, ...., yip | θ)

∏
yij :oij=0

dyij

where in (1) we applied the definition of MAR.

3 So in the presence of MAR data, the correct thing to do is integrate

over the missing data to obtain the marginal probability (density) of the

observed data.
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Utilization in multivariate normal models

In the case of multivariate normal models (so θ = (µ,Σ)) , the integration

is easy: Multivariate normals have normal marginals.

Example

Suppose y i = (yi1, NA, yi3, NA)T , so o i = (1, 0, 1, 0)T .

Then

p(o i , yi1, yi3 | µ,Σ) = p(o i ) p(yi1, yi3 | µ,Σ)

= p(o i )

∫
p(y i | µ,Σ) dy2 dy4

The marginal density p(yi1, yi3 | θ) is simply a bivariate normal density

with mean (µ1, µ3)T and covariance matrix made up of (σ2
1 , σ13, σ

2
3).
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Gibbs sampling with missing data

Complete data

If Y is the n× p matrix in which oi,j = 1 if Yi,j is observed and oi,j = 0

if Yi,j is missing, then Y has two parts

• Y obs := {yi,j : oi,j = 1}, the data that we observe, and

• Y miss := {yi,j : oi,j = 0}, the data that we do not observe.

Gibbs sampler

A Gibbs sampling scheme for approximating the posterior is given by:

1. Sampling µ(s+1) from p(µ | Y obs,Y
(s)
miss,Σ

(s));

2. Sampling Σ(s+1) from p(Σ | Y obs,Y
(s)
miss,µ

(s+1));

3. Sampling Y (s+1)
miss from p(Y miss | Y obs,µ

(s+1),Σ(s+1));

The first two steps are the same as before! The third step is covered in the next slide. Any guesses?
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Sampling the missing data

p(Y miss | Y obs,µ,Σ) ∝ p(Y miss,Y obs | µ,Σ)

=
n∏

i=1

p(y i,miss, y i,obs | µ,Σ)

∝
n∏

i=1

p(y i,miss | y i,obs,µ,Σ)

How to proceed?

We apply standard results about conditional distributions formed from partitions

of multivariate normals:

y [b] | y [a],µ,Σ ∼MVN
(
µb|a,Σb|a

)
, where

µb|a = µ[b] + Σ[b,a](Σ[a,a])
−1(y [a] − µ[a])

Σb|a = Σ[b,b] − Σ[b,a](Σ[a,a])
−1Σ[a,b]

Some macroscopic properties:

• The conditional mean, µb|a , starts off at the unconditional mean, µ[b] , but then is modified by (y [a] − µ[a]) in a way that

depends on the covariance Σ[b,a] .

• The conditional variance Σb|a is less than the unconditional variance Σ[b,b]
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Posterior Correlations

To each covariance matrix there

corresponds a correlation matrix C given by

C :=

{
cjk : cjk = Σ[j,k]/

√
Σ[j,j]Σ[k,k]

}
Simply taking the mean across samples, we

obtain the approximation

E[C | y 1, ..., yn] =


1.00 0.23 0.25 0.19

0.23 1.00 0.25 0.24

0.25 0.25 1.00 0.65

0.19 0.24 0.65 1.00


Notes:

• Bayesian paradigm again yielding unlimited access to

posterior functionals of interest, without doing any

extra inferential work!

• Correlations are generally of interest for multivariate

normal models, but they are especially relevant to

imputation.

Figure 3: 95% posterior

confidence intervals for

correlations
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Intelligent imputations

The posterior expectation gives a much better imputation than some flat

fixed value.

Figure 4: True values of the missing data vs. posterior expectations

Imputations are especially good for skin and bmi, due to their higher

correlations.
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