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Some questions

• What is variational inference?

• When is it useful? Can it even be useful to frequentists?

• How can we apply VI to inference problems?

• What is automatic differentiation variational inference (ADVI)?
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Overview
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Illustration

Here we approximate an probability distribution by find-

ing the best approximation from tractable family Q =

{10-component Gaussian mixture models}

Ranganath, R., Gerrish, S., & Blei, D. (2014, April). Black box variational inference. In Artificial Intelligence and Statistics (pp. 814-822).
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Overview

The problem: marginalization
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Parametric statistical models

Parametric statistical models

A parametric statistical model posits

• x : observed data

• θ: parameters

• z (possibly): latent random variables

Parameters vs. latent variables

Both z and θ are unobserved, but only the dimensionality of z increases

with the number of samples in x .

Frequentist vs. Bayesian variants

Frequentists take parameters θ to be fixed (but unknown) constants,

whereas the Bayesians take θ to be random variables.
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Three statistical modeling paradigms of interest

Let us consider models that present an intractable marginal.

Bayesian (non-latent variable) models

Example: Any model with a non-conjugate prior

Bayesian latent variable models

Examples: Bayesian Mixture Model, Bayesian Hidden Markov Model,

Latent Dirichlet Allocation,

Frequentist latent variable models

Examples: Hidden Markov Models (although we have handled this case) , Variational

Autoencoders (the classical kind) , Bayesian Generalized Linear Mixed Effects

Models
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Statistical inference

In general

We must compute the marginal

p(x | c) =

∫
p(x ,u | c) d u (1)

where

• x : observed data

• u: unobserved random variables

• c : constant values
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The need for marginalization in statistical inference

Inferential Target

goal marginal

Model p(x | c)

Bayesian p(θ | x) p(x) =

∫
p(θ, x) d θ

(non-latent)

Bayesian p(z ,θ | x) p(x) =

∫
p(θ, x , z) d θ d z

latent

Frequentist argmaxθ p(x | θ) p(x | θ) =

∫
p(x , z | θ) d z

latent

9



Problem: These marginalizations may be intractable

Example: Hidden Markov Model

Define T : the state transition matrix

εj : the jth emission distribution, j = 1, ..., k

π : the initial latent state distribution

p(x | θ) =
∑
z

p(x , z | θ)

=
∑

z=(z1,...,zn)

p(x , z | θ)

=
∑

z=(z1,...,zn)

πz1 εz1 (x1) Tz1,z2 εz2 (x2) Tz2,z3 , . . . , Tzn−1,zn εzn(xn)

has O(n kn) complexity. !4

Consider e.g. that (k,n) = (5,100) → 1072 calculations.
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Overview

The technique: functional optimization
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Towards variational inference

We construct a lower bound on the target marginal.

Variational Lower Bound (VLBO)

Let q be any probability density over u. Then:

ln p(x | c) = ln

∫
p(u, x | c) d u

= ln

∫
q(u)

p(u, x | c)

q(u)
d u

Jensen′s
≥

∫
q(u) ln

(
p(u, x | c)

q(u)

)
d u

:= VLBO (q)
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Variational Inference: Maximizing the VLBO

Variational Inference

Variational inference (VI) proceeds by finding q∗, the variational density

in tractable family Q which maximizes the VLBO :

q∗
solution

= argmax
q∈Q

approximating family

VLBO (q)

Rk: Note that we are trying to optimize over a function space (of a particular kind).
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Illustration

Here we approximate an probability distribution by find-

ing the best approximation from tractable family Q =

{10-component Gaussian mixture models}

Ranganath, R., Gerrish, S., & Blei, D. (2014, April). Black box variational inference. In Artificial Intelligence and Statistics (pp. 814-822).
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Overview

Decompositions: Intuition on the cost

function

15



Decompositions of the VLBO

Energy/Entropy Decomposition of the VLBO

By simply appealing to properties of the logarithm and the definition of

expectation, we obtain

VLBO (q) =

∫
q(u) ln p(x ,u | c) d u −

∫
q(u) ln q(u) d u

= Eq

[
log p(x ,u | c)

]
energy

+ H
[
q(u)

]
entropy

Q What is the effect of the entropy term?
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Decompositions of the VLBO

Likelihood/Prior Decomposition of the VLBO

By applying the chain rule to the preceding, and then reapplying the

definition of KL divergence, we obtain another nice form

VLBO (q) = Eq

[
log p(x ,u | c)

]
+ H

[
q(u)

]
= Eq

[
log p(x ,u | c)

]
− Eq

[
log q(u)

]
= Eq

[
log p(x | u, c)

]
+ Eq

[
log p(u | c)

]
− Eq

[
log q(u)

]
= Eq

[
log p(x | u, c)

]
expected log likelihood

− KL
(
q(u) || p(u | c)

)
divergence from prior

Note that the first term grows in magnitude as the number of samples

increases; thus, the prior’s influence diminishes asymptotically.
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Overview

The posterior perspective
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Maximizing the VLBOminimizes the KL divergence (to the posterior)

By definition, the KL divergence from the target posterior to the

variational density is given by

KL(q(u) || p(u | x , c)) = Eq

[
log

q(u)

p(u | x , c)

]
By the chain rule, we get

KL(q(u) || p(u | x , c)) = Eq[log q(u)]− Eq[log p(x ,u | c)]︸ ︷︷ ︸
energy/entropy decomposition

+ log p(x | c)

= − VLBO (q) + constant

Discuss: What is the optimal variational density?
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Maximizing the VLBOminimizes the KL divergence (to the posterior)

By definition, the KL divergence from the target posterior to the

variational density is given by

KL(q(u) || p(u | x , c)) = Eq

[
log

q(u)

p(u | x , c)

]
By the chain rule, we get

KL(q(u) || p(u | x , c)) = Eq[log q(u)]− Eq[log p(x ,u | c)]︸ ︷︷ ︸
energy/entropy decomposition

+ log p(x | c)

= − VLBO (q) + constant

The optimal variational density

The optimal variational density, q∗(u) is the target posterior density

p(u | x , c) when the underlying variational family Q is unrestricted
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Overview

Summary
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Summary

• VI is a general tool. It is useful whenever you face intractable

marginals.

Model Inferential Intractable Variational Posterior

goal marginal density

General case infer about θ p(x | c) q(u) p(u | x, c)

Bayesian p(θ | x) p(x) =

∫
p(θ, x) d θ q(θ) p(θ | x)

(non-latent)

Bayesian p(z, θ | x) p(x) =

∫
p(θ, x, z) d θ d z q(z, θ) p(z, θ | x)

latent

Frequentist argmaxθ p(x | θ) p(x | θ) =

∫
p(x, z | θ) d z q(z) p(z | x, θ)

latent

Note: Orange denotes the primary target, Blue denotes a helper.
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How does VI accommodate the goal of statistical inference?

Given selection of variational family Q, the optimal variational density q∗

...

The posterior perspective

• For Bayesian models: ... is the family member which is closest to

the target posterior p(u | x).

• For frequentist models: ... provides the best substitution

q∗(z) ≈ p(z | x ,θcurr) into the E-step of the EM algorithm1

The marginal perspective

• For frequentist models: ... makes the VLBO best approximate the

target marginal likelihood, p(x | θ), which is what we wanted to

maximize.

• For Bayesian models: ... raises the (approximate) evidence term

p(x) (the term used for Bayesian model comparison) as high as

possible.

1See next section for more information. 23
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Overview

Evaluation (in context)
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Approximate Bayesian Inference

• The two most prominent strategies for approximating intractable

posteriors are VI and Markov Chain Monte Carlo (MCMC).

• MCMC uses sampling. We construct a Markov chain over model

parameters. The stationary distribution is the posterior. We

approximate the posterior with samples.

• VI uses approximation. A tractable approximating family is chosen,

and parameters are optimized to be close to the posterior.
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Variational Inference vs MCMC

Variational Inference scales better to large datasets.

Figure 1: Comparison of CAVI to a Hamiltonian Monte Carlo-based sampling

technique. The plot shows log predictive test set accuracy by training time

(minutes). CAVI fits a Gaussian mixture model to 10,000 images in less than a

minute.

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American statistical

Association, 112(518), 859-877.
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Variational Inference vs. Expectation Propagation

Let us fix a distribution P and consider two optimization strategies

Variational Inference

Minimizing
KL(Q||P)

= EQ

[
log

q(x)
p(x)

]

Expectation Propagation

Minimizing
KL(P||Q)

= EP

[
log

p(x)
q(x)

]

Image Credit: Tushar Tank

Q: What does this say about VI? Which one would you prefer to use?
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Shortcoming: VI underestimates variance of the true posterior

KL(q(u) || p(u | x , c)) = Eq

[
log

q(u)

p(u | x , c)

]
Intuition

• If q(u) is low, then we don’t care (because of the expectation).

• If q(u) is high and p(x ,u | c) is low, then we pay a price 28



Modern application

We can compose probabilistic graphical models with neural networks to

exploit their complementary strengths.

The resulting model is expressive, but also interpretable/decomposable.

Johnson, M., Duvenaud, D. K., Wiltschko, A., Adams, R. P., & Datta, S. R. (2016). Composing graphical models with neural networks

for structured representations and fast inference. In Advances in neural information processing systems (pp. 2946-2954).
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Variational Inference and

Expectation Maximization
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Expectation Maximization (EM)

The EM algorithm refines an initial guess θ(0) via the recursion

θ(t+1) = argmaxθ Ep(z | x,θ(t))

[
ln p(x , z | θ)

]
until convergence to a local optimum.

Example: Gaussian Hidden Markov Model

E-step: Compute pi := p(zi | x i ,θ
(t)) via the forward-backward

algorithm.

M-step: Just a computation of weighted empirical means and variances:

µ̂
(t)
k =

∑
i

(pi = k) x i∑
i

(pi = k)
, Σ̂

(t)

k =

∑
i

(pi = k) (x i − µ̂(t))(x i − µ̂(t))T∑
i

(pi = k)
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EM from the perspective of VI

For a frequentist latent variable model, the VLBO is

VLBO (qz , θ) = Eq

[
log p(x , z | θ)

]
+ H

[
q(z)

]

Using coordinate ascent (in the sense of variational calculus) , we get the following update

equations:

q update : q(t+1)
z = argmaxqz

VLBO (qz ;θ(t)) (2)

θ update : θ(t+1) = argmaxθ VLBO (q(t+1)
z ;θ) (3)

As argued earlier, we can solve the q update exactly by setting

q(t+1)
z = p(z | x ;θ(t))

in which case the θ update becomes (what?)

θ(t+1) = argmaxθ Ep(z | x,θ(t))

[
ln p(x , z | θ)

]
(4)

which is precisely the EM algorithm.
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EM as coordinate ascent on the VLBO

• If Q unrestricted, we have EM

• What if we restrict Q ?
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Variational Expectation Maximization (VEM)

Consider a frequentist latent variable model. Since we don’t always have

access to p(z | x ,θ), we may restrict our variational family Q to some

convenient form. In this case, coordinate ascent on the VLBO is given by:

q(t+1)
z = argmaxqz∈Q VLBO (qz ;θ(t))

θ(t+1) = argmaxθ E
q

(t+1)
z

[
ln p(x , z | θ)

]
which generalizes the EM algorithm.
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Variational Bayes Expectation Maximization (VBEM)

Consider a Bayesian latent variable model. So we need to swap p(x , z ,θ)

for p(x , z | θ) in the VLBO .

If we construct the variational density with the factorization

q(z ,θ) = qz(z)qθ(θ)

then the VLBO becomes

VLBO (qz(z), qθ(θ)) :=

∫ ∫
qz(z)qθ(θ) ln

(
p(z ,θ, x)

qz(z)qθ(θ)

)
d θ d z

(5)

We can perform coordinate ascent on the VLBOwith respect to the

densities qz and qθ:

VB-E step : q(t+1)
z = argmaxqz

VLBO (qz ; q
(t)
θ )

VB-M step : q
(t+1)
θ = argmaxqθ VLBO (q(t+1)

z ; qθ)
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VBEM: Derivation

See notes.
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Variational Bayes Expectation Maximization (VBEM)

The coordinate ascent equations have the form

VB-E step : q(t+1)
z ∝ exp

(
E
q

(t)
θ

[
ln p(x , z | θ)

])
(6)

VB-M step : q
(t+1)
θ ∝ p(θ) exp

(
E
q

(t)
z

[
ln p(x , z | θ)

])
(7)

Prior-likelihood decomposition

Bayes’ rule

p(θ | x)
posterior

∝ p(θ)
prior

p(x | θ)
likelihood

VB-M update

q
(t+1)
θ

variational posterior

∝ p(θ)
prior

exp

(
E
q

(t)
z

[
ln p(x , z | θ)

])
expected likelihood under variational distribution
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VI and EM: Summary

Variational inference can be considered as a generalization of the

expectation maximization algorithm (which is generally used by

frequentists). It

• relaxes the need for tractable computation of the posterior

distribution p(z | x ,θ).

• relaxes the assumption that θ is a deterministic variable; variational

calculus lets us do coordinate ascent on the distribution governing θ.
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Coordinate Ascent Variational

Inference (CAVI)

39



Coordinate Ascent Variational Inference (CAVI)

Coordinate ascent variational inference (CAVI) is a general approach to

fitting models using VI.

This approach generalizes VBEM.
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Mean Field Coordinate Ascent Variational Inference (MF-

CAVI)

Mean field variational families

A variational family Q is mean field if it factorizes

q(u1, ..., uK ) =
K∏

k=1

qk(uk) (8)

Mean field coordinate ascent variational inference (MF-CAVI) is CAVI

performed under the mean field assumption (8).
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Update equations for MF-CAVI

To perform coordinate ascent on the VLBO under the mean field

assumption (8), we iteratively update our variational factors {qk}k via

qk(uk) ∝ exp

{
Eq−k

[
log p(uk | u−k , x , c)

]}
(9)

The derivation uses variational calculus, and is nearly syntactically

identical to the derivation of the VBEM updates.

Rk: Note the connection to Gibbs sampling. In the MCMC literature, the distributions p(uk | rest) are known as full conditionals or

complete conditionals. Gibbs sampling involves successive draws from the full conditionals. In mean-field variational inference, we take

expectations of the same distributions, in order to update our posterior approximations.
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Example: Bayesian Mixture

Model
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Example: Bayesian Mixture

Model

Why variational Bayesian mixture

models?
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Why variational Bayesian mixture models?

Why Bayes?

All the usual reasons – exploit prior knowledge, protect against

overfitting, can use the evidence (or ELBO) for model selection, etc.

Why Variational Bayes?

Traditional MCMC becomes very burdensome for these types of models

(mixture models, hidden mixture models, etc.) due to the multimodality in the posterior and

the label switching.
See: A comparison of variational approximations for fast inference in mixed logit models
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VB Predictive vs. ML Solution

Image Credit: Lukas Burget

• VB was initialized from the ML solution

• VB recovers from ML overfitting and is closer to the true

distribution for generating the training data
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Extensions of Bayesian Mixture Models

The Bayesian framework can be used to endow mixture models with

many nice properties.

Example: Dirichlet Process Mixture Models (DPMMs)

DPMM’s have an unbounded number of mixture components.

The model automatically adapts its number of components.

• Click here for Demo 1.

• Click here for Demo 2.

47
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Example: Bayesian Mixture

Model

Inference algorithm
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Example: Bayesian Gaussian Mixture Model

To see the mean field CAVI algorithm (9) in a concrete context, consider

a version of the Bayesian Gaussian Mixture Model.

µk ∼ Normal(Mk = 0,Vk = σ2) k = 1, ...,K

ci ∼ Categorical(π1, ..., πK ) i = 1, ..., n

xi | ci , µ ∼ Normal(µci , 1) i = 1, ..., n

(The model is simple in that it assumes univariate observations and that each mixture component has unit variance.)

The joint density, by chain rule, is

p(x , c , µ) = p(µ)
n∏

i=1

p(ci )p(xi | ci , µ)

And a mean-field variational family is given by

q(c , µ) =
K∏

k=1

q(µk)
n∏

i=1

q(ci )
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Example: Bayesian Gaussian Mixture Model

We apply (9) to determine the coordinate updates for qci , the variational

factors governing cluster assignments.

q(cik) ∝ exp

{
Eqµk

[
log p(ci = k) + log p(xi | ci = k, µ)

]}
∝ exp

{
Eqµk

[
log πk + xiµk −

1

2
µ2
k

]}
∝ πk exp

{
xiEqµk

[µk ]− 1

2
Eqµk

[µ2
k ]

}

The next slide reveals that the qµk
are Gaussian, and hence the above

expectations are easy to compute.

Note: We abuse notation, and write q(cik ) as shorthand for q(ci = k)
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Bayesian Gaussian Mixture Model:

Updates to mixture component means

Using the same strategy as when updating cluster assignments ci , we

obtain

q(µk) ∝ exp

{
E−qµk

[
log p(µk) +

n∑
i=1

log p(xi | ci = k, µ)

]}

∝ exp

{
− 1

2σ2
µ2
k +

n∑
i=1

Eqc

[
1ci=k

(
xiµk −

1

2
µ2
k

)]}

∝ exp

{( n∑
i=1

q(cik)xi

)
µk + −1

2

(
1

σ2
+

n∑
i=1

q(cik)

)
µ2
k

}

which is an exponential family distribution with sufficient statistics

(µk , µ
2
k) and base measure ∝ 1; hence it is Gaussian.
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Bayesian Gaussian Mixture Model:

Updates to mixture component means

It is easy to show2 that for a Gaussian with mean M and variance V , the

natural parameters are given by

η1 =
M

V
, η2 = − 1

2V

From the last slide, the variational density q(µk) has natural parameters

η1 =

( n∑
i=1

q(cik)xi

)
, η2 = −1

2

(
1

σ2
+

n∑
i=1

q(cik)

)
Using this, we can backsolve to determine the updates to the mean and

variance of the Gaussian variational density governing the kth cluster

mean:

Mk =

∑n
i=1 q(cik)xi

1/σ2 +
∑n

i=1 q(cik)
, Vk =

1

1/σ2 +
∑n

i=1 q(cik)
2

Indeed, in this course we have seen
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Example: Latent Dirichlet

Allocation (LDA)
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Overview

LDA is a generative probabilistic model of a corpus of documents of text.

LDA assumes:

• There is a set of topics that describe the corpus

• Each document exhibits these topics to varying degrees.

So:

• The topics and how they relate to the documents are hidden

structure

• The main computational problem is to infer this hidden structure
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• Each topic is a distribution over words.

• Each document is a mixture of corpus-wide topics.

• Each word is drawn from one of those topics.
Rk: This is a “bag of words” model.

Source: David Blei, 2012 ICML Tutorial
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• In reality, we only observe the documents.

• The model structure is hidden.

• Our goal is to infer the hidden variables; i.e. compute

p(topics, proportions, assignments | documents)
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Recall: Dirichlet Distribution

• Dirichlet distribution is conjugate prior of Categorical

p(θ | α) =
Γ(
∑K

i=1 αi )∏k
i=1 Γ(αi )

θα1−1
1 · · · θαk−1

k

• For symmetric Dirichlet distributions (α1 = ... = αK ), a scalar

hyperparameter α =
∑

k αk controls the shape and sparsity of the

θd ’s. (per-document topic proportions) .

• high α: typical θd (from the prior) will be uniform

• small α: a typical θd (from the prior) will be sparse

• Likewise, η controls the shape and sparsity of the βk ’s (the topics – distribution

over words)
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LDA: Generative Process

The model is described by the following generative process:

• Fix a vocabulary of V words, and set the number of topics, K .

• Set hyperparameters η ∈ RV , α ∈ RK .

• For k in (1,K):

• Define the topic (a distribution over words), βk ∈ RV ∼ Dir(η).3

• For d in (1,D) :

• Choose (per-document) topic proportions θd ∈ RK ∼ Dir(α).4

• For n in (1,Nd ):

• Choose the topic assignment zd,n ∼ CategoricalK (θd )

• Choose word wd,n ∼ CategoricalV (βzd,n )

3
Interpretation of η: psuedocount of vocabulary words observed across prior topics.

4
Interpretation of α: psuedocount of topics observed across prior documents.
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LDA as a graphical model

Recall:

• Nodes are random variables.

• Shaded nodes are observed.

• Plates indicate replicated variables.

• Each node is conditionally independent from its non-descendants given its parents. 60



Joint distribution

p(z ,θ,w ,β | α,η) =
K∏

k=1

p(βk | η)
Dirichlet

D∏
d=1

p(θd | α)
Dirichlet

N∏
n=1

p(zd,n | θd )
Categorical

p(wd,n | zd,n,βk )
Categorical

(10)

Remark. Note that LDA is a “bag-of-words” model; i.e. the probability of a word (or document) is invariant to word order.
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Variational distribution

We approximate the posterior p(θ | z ,w) using mean field variational

inference (8). In particular, we assume that the variational family Q has

a density which factorizes as

q = qδ(θ) qτ (z)

=
D∏

d=1

qδ(θd)︸ ︷︷ ︸
Dirichlet

Nd∏
n=1

qτ n(zd,n)︸ ︷︷ ︸
Categorical

(11)

Note We are treating the topics βk as a constant for simplicity. For a fuller treatment, see Blei, D. M., Ng, A. Y., & Jordan, M. I.

(2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
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Update equations

LDA coordinate ascent update equations

δd,k
var. dirichlet (topic proportion)

= αk
prior counts

+

Nd∑
n=1

τd,n,k
var. expected assignment

(12)

τd,n,k
var. categorical (topic assigment)

∝ exp

{
Eqδ(θ)

[
log θd,k

]}
var. ”prior” topic assignment

βk,[wd,n]
likelihood

=

(
Ψ(δk)−Ψ(

∑
j

δj)

)
βk,[wd,n] (13)

where Ψ(·) is the first derivative of the log Γ function.

• Derivable via VBEM (see notes).

• Characteristic form: latent variable update depends on the data,

global parameter update depends on the latent variable
Note We are treating β as a constant for brevity. We could fit also β to the data via VEM. (VEM does ”empirical Bayes” for you.) More

generally, we could model β as a random variable with VBEM. For a fuller treatment, see Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003).

Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
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The role of analytical computations

The varational categorical update crucially hinges on facts about the

exponential family.

In particular, the meat of the proof of the variational categorical update

depends crucially on the fact that the Dirichlet of a single probability

component is given by

Eqδ(θ)

[
log θi

]
= Ψ(δi )−Ψ(

∑
k

δk) (14)

where Ψ(·) is the first derivative of the log Γ function. This fact is justified via facts about

the exponential family (such as that the derivative of the log normalization factor with respect to the natural parameter is equal to the

sufficient statistic).

For many more complicated models (e.g. VAE), such expectations (even the

variational ones) are intractable, and so we won’t be able to use CAVI.
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LDA Example Inference

• Data: 17K Science documents from 1990-2000 ( 11M words, 20K unique terms)

• Model: 100-topic LDA model, fit using variational inference
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Application: Anomaly Detection in Network Traffic Traces

LDA can be applied to documents that can be just about anything!

IP Addresses

An ip address, like 72.194.113.177, is (roughly) an address assigned to

each device connected to the Internet. My laptop has one, my iphone

has one, every website (Google, Apple, etc.) has one, etc.

One application (Newton, B. D. (2012). Anomaly Detection in Network Traffic Traces Using Latent Dirichlet Allocation.)

• “Documents” = the session of a specific IP address

• “words” = the full external IP address and port number

combinations.

• The “words” in each “document” are counted and then this data set

is processed by LDA to yield a compact model of the data.

Q: Ok, but how to perform anomaly detection? Q: What assumptions are being made by LDA?
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I analyzed each of the anomalies detected in the last half hour

of the trace [...]. The second anomaly with nearly 300 thou-

sand messages exchanged with an SMTP server, is a bit more

troubling. It is possible that this was actually a malicious client

participating in a Mailbomb attack. According to the DARPA

Intrusion Detection Attacks Database [8] a Mailbomb attack “is

one in which the attacker sends many messages to a server, over-

flowing that server’s mail queue and possibly causing a system

failure.”
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Automatic Differentiation

Variational Inference (ADVI)

68



Coordinate ascent, and its discontents

The ELBO (Evidence Lower Bound): Parametric View

L(λ) = Eqλ(z)

[
log p(x , z)− log q(z)

]

Traditionally, we optimize via coordinate-ascent (CAVI).

λ̂t+1 = λ̂t + ρt∇L(λ̂t)

Problem: Each model’s VI algorithm isif it exists a snowflake.

• Requires model-specific computations

• Must pick a good q.
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Differentiable Probability Models

Goal: Approximate the posterior p(θ | x) ∝ p(x | θ)p(θ)

The class of probability models that ADVI supports

• Dataset x = x1:N where each xn is a realization of a discrete or

continuous random variable

• Latent variables θ are continuous

• ∇θ log p(x ,θ) exists within the support of the prior

Θ := supp(p(θ)) = {θ | θ ∈ RK and p(θ) > 0} ⊆ RK

Includes

Generalized linear models

Mixture models

Topic models

Linear dynamic systems

Gaussian process models

Deep exponential families

Excludes

Ising model

Sigmoid belief networks

Bayesian nonparametric models
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Step 1: Transforming to unbounded support

We define a differentiable bijection to give the parameters unbounded support.

T : Θ → RK

θ 7→ ζ

We use change of variables to express the joint density in the new space.

p(x ,ζ)
new space

= p
(
x ,T−1(ζ)

) ∣∣∣∣ det JT−1 (ζ)

∣∣∣∣
transformed original space

So in the new space, the ELBO becomes

L(λ) = Eq(ζ;λ)

[
log p

(
x ,T−1(ζ)

)
+ log

∣∣∣∣ det JT−1 (ζ)

∣∣∣∣ ]
+ H[q(ζ;λ)]

3 Model-independent variational factors.

7 Cannot compute the gradient of

the cost function (Think: Why can’t we just

approximate the term by sampling?)
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Step 2: The reparameterization trick

Example: We can re-parameterize the Gaussian ζ ∼ N (µ,Σ), such that

its dependence on the original parameter λ = (µ,Σ) is transferred to a

(deterministic) standardization function, Sλ

• Factorize Σ = LLT .

• The standardized random variable is

ε := Sλ(ζ) = L−1(ζ − µ), where ε ∼ N (0, I )

• The unstandardized random variable can be recovered via

ζ = S−1
λ (ε)

ADVI ELBO

L(λ) = EN (ε;0,I )

[
log p

(
x,T−1(S−1

λ (ε)
))

+ log

∣∣∣∣ det JT−1

(
S−1
λ (ε)

)∣∣∣∣ ] + H[q(ζ; λ)]

3 Model-independent variational factors.
3 Can estimate the gradient of the

expectation.

72



Step 2: The reparameterization trick

Example: We can re-parameterize the Gaussian ζ ∼ N (µ,Σ), such that

its dependence on the original parameter λ = (µ,Σ) is transferred to a

(deterministic) standardization function, Sλ

• Factorize Σ = LLT .

• The standardized random variable is

ε := Sλ(ζ) = L−1(ζ − µ), where ε ∼ N (0, I )

• The unstandardized random variable can be recovered via

ζ = S−1
λ (ε)

ADVI ELBO

L(λ) = EN (ε;0,I )

[
log p

(
x,T−1(S−1

λ (ε)
))

+ log

∣∣∣∣ det JT−1

(
S−1
λ (ε)

)∣∣∣∣ ] + H[q(ζ; λ)]

3 Model-independent variational factors.
3 Can estimate the gradient of the

expectation.
72



Inference can be substantially more efficient

Results with a non-negative matrix factorization model applied to the

Frey Faces dataset.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017). Automatic differentiation variational inference. The Journal

of Machine Learning Research, 18(1), 430-474.
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Questions?
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