Variational Inference

Michael Thomas Wojnowicz

June 14, 2021

Data Intensive Studies Center, Tufts University

- 1. Overview
- 2. Variational Inference and Expectation Maximization
- 3. Coordinate Ascent Variational Inference (CAVI)
- 4. Example: Bayesian Mixture Model
- 5. Example: Latent Dirichlet Allocation (LDA)
- 6. Automatic Differentiation Variational Inference (ADVI)

- What is variational inference?
- When is it useful? Can it even be useful to frequentists?
- How can we apply VI to inference problems?
- What is *automatic* differentiation variational inference (ADVI)?

Illustration

Here we approximate an probability distribution by finding the best approximation from tractable family $Q = \{10\text{-component Gaussian mixture models}\}$

Ranganath, R., Gerrish, S., & Blei, D. (2014, April). Black box variational inference. In Artificial Intelligence and Statistics (pp. 814-822).

The problem: marginalization

Parametric statistical models

Parametric statistical models

A parametric statistical model posits

- x: observed data
- θ : parameters
- z (possibly): latent random variables

Parameters vs. latent variables

Both z and θ are unobserved, but only the dimensionality of z increases with the number of samples in x.

Frequentist vs. Bayesian variants

Frequentists take parameters θ to be fixed (but unknown) constants, whereas the Bayesians take θ to be random variables.

Let us consider models that present an intractable marginal.

Bayesian (non-latent variable) models Example: Any model with a non-conjugate prior Let us consider models that present an intractable marginal.

Bayesian (non-latent variable) models Example: Any model with a non-conjugate prior

Bayesian latent variable models Examples: Bayesian Mixture Model, Bayesian Hidden Markov Model, Latent Dirichlet Allocation, Let us consider models that present an intractable marginal.

Bayesian (non-latent variable) models Example: Any model with a non-conjugate prior

Bayesian latent variable models Examples: Bayesian Mixture Model, Bayesian Hidden Markov Model, Latent Dirichlet Allocation,

Frequentist latent variable models

Examples: Hidden Markov Models $_{(although we have handled this case)}$, Variational Autoencoders $_{(the classical kind)}$, Bayesian Generalized Linear Mixed Effects Models

In general

We must compute the marginal

$$p(\mathbf{x} \mid \mathbf{c}) = \int p(\mathbf{x}, \mathbf{u} \mid \mathbf{c}) \ d \ \mathbf{u}$$

where

- x: observed data
- u: unobserved random variables
- c: constant values

(1)

The need for marginalization in statistical inference

	Inferential goal	Target marginal
Model		$p(\boldsymbol{x} \mid \boldsymbol{c})$
		<i>a</i>
Bayesian	$p(\theta \mid \mathbf{x})$	$p(\mathbf{x}) = \int p(\mathbf{ heta}, \mathbf{x}) \ d \ \mathbf{ heta}$
(non-latent)		0
Bayesian	$p(\boldsymbol{z}, \boldsymbol{\theta} \mid \boldsymbol{x})$	$p(\mathbf{x}) = \int p(\mathbf{\theta}, \mathbf{x}, \mathbf{z}) d\mathbf{\theta} d\mathbf{z}$
latent		J
Frequentist	$argmax_{oldsymbol{ heta}} p(oldsymbol{x} \mid oldsymbol{ heta})$	$p(\mathbf{x} \mid \mathbf{\theta}) = \int p(\mathbf{x}, \mathbf{z} \mid \mathbf{\theta}) \ d\mathbf{z}$
latent		J

Problem: These marginalizations may be intractable

Example: Hidden Markov Model

Define T: the state transition matrix

- ϵ_j : the jth emission distribution, j=1,...,k
- π : the initial latent state distribution

$$p(\mathbf{x} \mid \theta) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} \mid \theta)$$

= $\sum_{z=(z_1,...,z_n)} p(\mathbf{x}, \mathbf{z} \mid \theta)$
= $\sum_{z=(z_1,...,z_n)} \pi_{z_1} \epsilon_{z_1}(x_1) T_{z_1,z_2} \epsilon_{z_2}(x_2) T_{z_2,z_3},..., T_{z_{n-1},z_n} \epsilon_{z_n}(x_n)$

has $\mathcal{O}(n k^n)$ complexity. \triangle

Consider e.g. that $(k,n) = (5,100) \rightarrow 10^{72}$ calculations.

The technique: functional optimization

We construct a lower bound on the target marginal.

Variational Lower Bound (VLBO)

Let q be any probability density over u. Then:

$$\ln p(\mathbf{x} \mid \mathbf{c}) = \ln \int p(\mathbf{u}, \mathbf{x} \mid \mathbf{c}) \, d \, \mathbf{u}$$
$$= \ln \int q(\mathbf{u}) \, \frac{p(\mathbf{u}, \mathbf{x} \mid \mathbf{c})}{q(\mathbf{u})} \, d \, \mathbf{u}$$
$$\stackrel{\text{Jensen's}}{\geq} \int q(\mathbf{u}) \, \ln \left(\frac{p(\mathbf{u}, \mathbf{x} \mid \mathbf{c})}{q(\mathbf{u})}\right) \, d \, \mathbf{u}$$
$$:= \text{VLBO}(q)$$

Variational Inference

Variational inference (VI) proceeds by finding q^* , the variational density in tractable family Q which maximizes the VLBO:

Rk: Note that we are trying to optimize over a function space (of a particular kind).

Illustration

Here we approximate an probability distribution by finding the best approximation from tractable family $Q = \{10\text{-component Gaussian mixture models}\}$

Ranganath, R., Gerrish, S., & Blei, D. (2014, April). Black box variational inference. In Artificial Intelligence and Statistics (pp. 814-822).

Decompositions: Intuition on the cost function

Energy/Entropy Decomposition of the VLBO

By simply appealing to properties of the logarithm and the definition of expectation, we obtain

$$\begin{aligned} \text{VLBO}\left(q\right) &= \int q(\boldsymbol{u}) \, \ln p(\boldsymbol{x}, \boldsymbol{u} \mid \boldsymbol{c}) \, d\, \boldsymbol{u} - \int q(\boldsymbol{u}) \, \ln q(\boldsymbol{u}) \, d\, \boldsymbol{u} \\ &= \mathbb{E}_{q} \big[\log p(\boldsymbol{x}, \boldsymbol{u} \mid \boldsymbol{c}) \big] + \mathbb{H} \big[q(\boldsymbol{u}) \big]_{entropy} \end{aligned}$$

Q What is the effect of the entropy term?

Likelihood/Prior Decomposition of the VLBO

By applying the chain rule to the preceding, and then reapplying the definition of KL divergence, we obtain another nice form

$$\begin{aligned} \text{VLBO}\left(q\right) &= \mathbb{E}_{q}\left[\log p(\boldsymbol{x}, \boldsymbol{u} \mid \boldsymbol{c})\right] + \mathbb{H}\left[q(\boldsymbol{u})\right] \\ &= \mathbb{E}_{q}\left[\log p(\boldsymbol{x}, \boldsymbol{u} \mid \boldsymbol{c})\right] - \mathbb{E}_{q}\left[\log q(\boldsymbol{u})\right] \\ &= \mathbb{E}_{q}\left[\log p(\boldsymbol{x} \mid \boldsymbol{u}, \boldsymbol{c})\right] + \mathbb{E}_{q}\left[\log p(\boldsymbol{u} \mid \boldsymbol{c})\right] - \mathbb{E}_{q}\left[\log q(\boldsymbol{u})\right] \\ &= \mathbb{E}_{q}\left[\log p(\boldsymbol{x} \mid \boldsymbol{u}, \boldsymbol{c})\right] - \text{KL}\left(q(\boldsymbol{u}) \mid\mid p(\boldsymbol{u} \mid \boldsymbol{c})\right) \\ &\stackrel{\text{expected log likelihood}}{} \end{aligned}$$

Note that the first term grows in magnitude as the number of samples increases; thus, the prior's influence diminishes asymptotically.

The posterior perspective

By definition, the KL divergence from the target posterior to the variational density is given by

$$\mathtt{KL}(q(\boldsymbol{u}) \mid\mid p(\boldsymbol{u} \mid \boldsymbol{x}, \boldsymbol{c})) = \mathbb{E}_q \left[\log \frac{q(\boldsymbol{u})}{p(\boldsymbol{u} \mid \boldsymbol{x}, \boldsymbol{c})} \right]$$

By the chain rule, we get

$$\begin{split} \text{KL}(q(\boldsymbol{u}) \mid\mid p(\boldsymbol{u} \mid \boldsymbol{x}, \boldsymbol{c})) &= \underbrace{\mathbb{E}_{q}[\log q(\boldsymbol{u})] - \mathbb{E}_{q}[\log p(\boldsymbol{x}, \boldsymbol{u} \mid \boldsymbol{c})]}_{\text{energy/entropy decomposition}} + \log p(\boldsymbol{x} \mid \boldsymbol{c}) \\ &= - \text{VLBO}(q) + \text{constant} \end{split}$$

Discuss: What is the optimal variational density?

Maximizing the VLBO minimizes the KL divergence (to the posterior)

By definition, the KL divergence from the target posterior to the variational density is given by

$$\texttt{KL}(q(\boldsymbol{u}) \mid\mid p(\boldsymbol{u} \mid \boldsymbol{x}, \boldsymbol{c})) = \mathbb{E}_q \left[\log \frac{q(\boldsymbol{u})}{p(\boldsymbol{u} \mid \boldsymbol{x}, \boldsymbol{c})} \right]$$

By the chain rule, we get

$$\begin{split} \text{KL}(q(\boldsymbol{u}) \mid\mid p(\boldsymbol{u} \mid \boldsymbol{x}, \boldsymbol{c})) &= \underbrace{\mathbb{E}_{q}[\log q(\boldsymbol{u})] - \mathbb{E}_{q}[\log p(\boldsymbol{x}, \boldsymbol{u} \mid \boldsymbol{c})]}_{\text{energy/entropy decomposition}} &+ \log p(\boldsymbol{x} \mid \boldsymbol{c}) \\ &= - \text{VLBO}(q) &+ \text{constant} \end{split}$$

The optimal variational density

The optimal variational density, $q^*(u)$ is the target posterior density $p(u \mid x, c)$ when the underlying variational family Q is unrestricted

Summary

• VI is a general tool. It is useful whenever you face intractable marginals.

Model	Inferential goal	Intractable marginal	Variational density	Posterior
General case	infer about $ heta$	$p(x \mid c)$	q(u)	$p(u \mid x, c)$
Bayesian (non-latent)	$p(\theta \mid x)$	$p(\mathbf{x}) = \int p(\boldsymbol{\theta}, \mathbf{x}) \ d \ \boldsymbol{\theta}$	q(heta)	$p(\theta \mid x)$
Bayesian latent	$p(z, \theta \mid x)$	$p(\mathbf{x}) = \int p(\theta, \mathbf{x}, \mathbf{z}) d\theta d\mathbf{z}$	$q(z, \theta)$	$p(z, \theta \mid x)$
Frequentist latent	$\operatorname{argmax}_{\theta} p(x \mid \theta)$	$p(x \mid \theta) = \int p(x, z \mid \theta) dz$	q(z)	$p(z \mid x, \theta)$

• VI is a general tool. It is useful whenever you face intractable marginals.

Model	Inferential goal	Intractable marginal	Variational density	Posterior
General case	infer about $ heta$	$p(x \mid c)$	q(u)	$p(u \mid x, c)$
Bayesian (non-latent)	$p(\theta \mid x)$	$p(\mathbf{x}) = \int p(\boldsymbol{\theta}, \mathbf{x}) \ d \ \boldsymbol{\theta}$	q(heta)	$p(\theta \mid x)$
Bayesian latent	$p(z, \theta \mid x)$	$p(\mathbf{x}) = \int p(\mathbf{\theta}, \mathbf{x}, \mathbf{z}) \ d\mathbf{\theta} \ d\mathbf{z}$	$q(z, \theta)$	$p(z, \theta \mid x)$
Frequentist latent	$\operatorname{argmax}_{\theta} p(x \mid \theta)$	$p(\mathbf{x} \mid \boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z} \mid \boldsymbol{\theta}) d \mathbf{z}$	q(z)	$p(z \mid x, \theta)$

Note: Orange denotes the primary target, Blue denotes a helper.

How does VI accommodate the goal of statistical inference?

Given selection of variational family \mathcal{Q} , the optimal variational density q^*

The posterior perspective

- For Bayesian models: ... is the family member which is closest to the target posterior p(u | x).
- For frequentist models: ... provides the best substitution $q^*(z) \approx p(z \mid x, \theta^{curr})$ into the E-step of the EM algorithm¹

¹See next section for more information.

How does VI accommodate the goal of statistical inference?

Given selection of variational family \mathcal{Q} , the optimal variational density q^*

The posterior perspective

- For Bayesian models: ... is the family member which is closest to the target posterior p(u | x).
- For frequentist models: ... provides the best substitution $q^*(z) \approx p(z \mid x, \theta^{curr})$ into the E-step of the EM algorithm¹

The marginal perspective

- For frequentist models: ... makes the VLBO best approximate the target marginal likelihood, $p(x \mid \theta)$, which is what we wanted to maximize.
- For Bayesian models: ... raises the (approximate) evidence term p(x) (the term used for Bayesian model comparison) as high as possible.

¹See next section for more information.

Evaluation (in context)

- The two most prominent strategies for approximating intractable posteriors are VI and Markov Chain Monte Carlo (MCMC).
- MCMC uses sampling. We construct a Markov chain over model parameters. The stationary distribution is the posterior. We approximate the posterior with samples.
- VI uses approximation. A tractable approximating family is chosen, and parameters are optimized to be close to the posterior.

Variational Inference vs MCMC

Variational Inference scales better to large datasets.

Figure 1: Comparison of CAVI to a Hamiltonian Monte Carlo-based sampling technique. The plot shows log predictive test set accuracy by training time (minutes). CAVI fits a Gaussian mixture model to 10,000 images in less than a minute.

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American statistical Association, 112(518), 859-877.

Variational Inference vs. Expectation Propagation

Let us fix a distribution P and consider two optimization strategies

Variational Inference

Expectation Propagation $Minimizing_{KL(P||Q)} = \mathbb{E}_P \left[\log \frac{p(x)}{q(x)} \right]$

Q: What does this say about VI? Which one would you prefer to use?

Shortcoming: VI underestimates variance of the true posterior

$$extsf{KL}(q(oldsymbol{u}) \mid\mid p(oldsymbol{u} \mid oldsymbol{x}, oldsymbol{c})) = \mathbb{E}_q igg[\log rac{q(oldsymbol{u})}{p(oldsymbol{u} \mid oldsymbol{x}, oldsymbol{c})} igg]$$

Intuition

- If $q(\mathbf{u})$ is low, then we don't care (because of the expectation).
- If q(u) is high and p(x, u | c) is low, then we pay a price

Modern application

We can compose probabilistic graphical models with neural networks to exploit their complementary strengths.

The resulting model is expressive, but also interpretable/decomposable.

Johnson, M., Duvenaud, D. K., Wiltschko, A., Adams, R. P., & Datta, S. R. (2016). Composing graphical models with neural networks for structured representations and fast inference. In Advances in neural information processing systems (pp. 2946-2954).

Variational Inference and Expectation Maximization

Expectation Maximization (EM)

The EM algorithm refines an initial guess $heta^{(0)}$ via the recursion

$$oldsymbol{ heta}^{(t+1)} = \operatorname{argmax}_{oldsymbol{ heta}} \mathbb{E}_{p(oldsymbol{z} \mid oldsymbol{x}, oldsymbol{ heta}^{(t)})} \bigg[\ln p(oldsymbol{x}, oldsymbol{z} \mid oldsymbol{ heta}) \bigg]$$

until convergence to a local optimum.

Example: Gaussian Hidden Markov Model

E-step: Compute $p_i := p(z_i | \mathbf{x}_i, \boldsymbol{\theta}^{(t)})$ via the forward-backward algorithm.

M-step: Just a computation of weighted empirical means and variances:

$$\widehat{\mu}_{k}^{(t)} = \frac{\sum_{i} (p_{i} = k) \mathbf{x}_{i}}{\sum_{i} (p_{i} = k)}, \qquad \widehat{\Sigma}_{k}^{(t)} = \frac{\sum_{i} (p_{i} = k) (\mathbf{x}_{i} - \widehat{\mu}^{(t)}) (\mathbf{x}_{i} - \widehat{\mu}^{(t)})^{T}}{\sum_{i} (p_{i} = k)}$$
For a frequentist latent variable model, the VLBO is

$$\texttt{VLBO}\left(q_{\boldsymbol{z}}, \theta\right) = \mathbb{E}_{q}\big[\log p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)\big] + \mathbb{H}\big[q(\boldsymbol{z})\big]$$

For a frequentist latent variable model, the VLBO is

$$ext{VLBO}\left(q_{m{z}}, heta
ight) = \mathbb{E}_{q}ig[\log p(m{x}, m{z} \mid m{ heta})ig] + \mathbb{H}ig[q(m{z})ig]$$

Using coordinate ascent (in the sense of variational calculus), we get the following update equations:

q update:
$$q_z^{(t+1)} = \operatorname{argmax}_{q_z} \operatorname{VLBO}(q_z; \theta^{(t)})$$
 (2)

$$\theta$$
 update : $\theta^{(t+1)} = \operatorname{argmax}_{\theta} VLBO(q_z^{(t+1)}; \theta)$ (3)

For a frequentist latent variable model, the VLBO is

$$ext{VLBO}\left(q_{m{z}}, heta
ight) = \mathbb{E}_{q}ig[\log p(m{x}, m{z} \mid m{ heta})ig] + \mathbb{H}ig[q(m{z})ig]$$

Using coordinate ascent (in the sense of variational calculus), we get the following update equations:

q update:
$$q_z^{(t+1)} = \operatorname{argmax}_{q_z} \operatorname{VLBO}(q_z; \theta^{(t)})$$
 (2)

$$\theta$$
 update : $\theta^{(t+1)} = \operatorname{argmax}_{\theta} VLBO(q_z^{(t+1)}; \theta)$ (3)

As argued earlier, we can solve the q update exactly by setting

$$q_{\boldsymbol{z}}^{(t+1)} = p(\boldsymbol{z} \mid \boldsymbol{x}; \boldsymbol{\theta}^{(t)})$$

in which case the θ update becomes (what?)

For a frequentist latent variable model, the VLBO is

$$ext{VLBO}\left(q_{m{z}}, heta
ight) = \mathbb{E}_{q}ig[\log p(m{x}, m{z} \mid m{ heta})ig] + \mathbb{H}ig[q(m{z})ig]$$

Using coordinate ascent $(in \ the \ sense \ of \ variational \ calculus)$, we get the following update equations:

q update:
$$q_z^{(t+1)} = \operatorname{argmax}_{q_z} \operatorname{VLBO}(q_z; \theta^{(t)})$$
 (2)

$$\theta$$
 update : $\theta^{(t+1)} = \operatorname{argmax}_{\theta} VLBO(q_z^{(t+1)}; \theta)$ (3)

As argued earlier, we can solve the q update exactly by setting

$$q_{\boldsymbol{z}}^{(t+1)} = p(\boldsymbol{z} \mid \boldsymbol{x}; \boldsymbol{\theta}^{(t)})$$

in which case the θ update becomes (what?)

$$\boldsymbol{\theta}^{(t+1)} = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{p(\boldsymbol{z} \mid \boldsymbol{x}, \boldsymbol{\theta}^{(t)})} \bigg[\ln p(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{\theta}) \bigg]$$
(4)

which is precisely the EM algorithm.

EM as coordinate ascent on the VLBO

- $\bullet~$ If ${\cal Q}$ unrestricted, we have EM
- What if we restrict \mathcal{Q} ?

Consider a frequentist latent variable model. Since we don't always have access to $p(z \mid x, \theta)$, we may restrict our variational family Q to some convenient form. In this case, coordinate ascent on the VLBO is given by:

$$\begin{split} q_{z}^{(t+1)} &= \operatorname{argmax}_{q_{z} \in \mathcal{Q}} \ \text{VLBO}\left(q_{z}; \theta^{(t)}\right) \\ \theta^{(t+1)} &= \operatorname{argmax}_{\theta} \mathbb{E}_{q_{z}^{(t+1)}} \bigg[\ln p(\mathbf{x}, \mathbf{z} \mid \theta) \bigg] \end{split}$$

which generalizes the EM algorithm.

Variational Bayes Expectation Maximization (VBEM)

Consider a Bayesian latent variable model. So we need to swap $p(x, z, \theta)$ for $p(x, z \mid \theta)$ in the VLBO.

If we construct the variational density with the factorization

$$q(\boldsymbol{z}, \boldsymbol{\theta}) = q_{\boldsymbol{z}}(\boldsymbol{z})q_{\boldsymbol{\theta}}(\boldsymbol{\theta})$$

then the VLBO becomes

$$\text{VLBO}\left(q_{z}(z), q_{\theta}(\theta)\right) := \int \int q_{z}(z)q_{\theta}(\theta) \ln\left(\frac{p(z, \theta, x)}{q_{z}(z)q_{\theta}(\theta)}\right) d\theta dz$$

$$\tag{5}$$

We can perform coordinate ascent on the VLBO with respect to the densities q_z and q_{θ} :

$$\begin{split} \textbf{VB-E step}: \quad q_z^{(t+1)} &= \operatorname{argmax}_{q_z} \ \texttt{VLBO}\left(q_z \ ; \ q_{\theta}^{(t)}\right) \\ \textbf{VB-M step}: \quad q_{\theta}^{(t+1)} &= \operatorname{argmax}_{q_{\theta}} \ \texttt{VLBO}\left(q_z^{(t+1)} \ ; \ q_{\theta}\right) \end{split}$$

See notes.

Variational Bayes Expectation Maximization (VBEM)

The coordinate ascent equations have the form

VB-E step:
$$q_{z}^{(t+1)} \propto \exp\left(\mathbb{E}_{q_{\theta}^{(t)}}\left[\ln p(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{\theta})\right]\right)$$
 (6)

VB-M step:
$$q_{\theta}^{(t+1)} \propto p(\theta) \exp\left(\mathbb{E}_{q_{z}^{(t)}}\left[\ln p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)\right]\right)$$
 (7)

Prior-likelihood decomposition

Bayes' rule

$$p(\theta \mid \mathbf{x}) \propto p(\theta) p(\mathbf{x} \mid \theta)$$
posterior prior likelihood

VB-M update

$$q_{m{ heta}}^{(t+1)} \propto p(m{ heta}) \exp\left(\mathbb{E}_{q_{m{x}}^{(t)}}\left[\ln p(m{x},m{z} \mid m{ heta})
ight]
ight)$$

Variational inference can be considered as a generalization of the expectation maximization algorithm (which is generally used by frequentists). It

- relaxes the need for tractable computation of the posterior distribution $p(z \mid x, \theta)$.
- relaxes the assumption that θ is a deterministic variable; variational calculus lets us do coordinate ascent on the *distribution* governing θ.

Coordinate Ascent Variational Inference (CAVI)

Coordinate ascent variational inference (CAVI) is a general approach to fitting models using VI.

This approach generalizes VBEM.

Mean Field Coordinate Ascent Variational Inference (MF-CAVI)

Mean field variational families

A variational family ${\mathcal Q}$ is mean field if it factorizes

$$q(u_1,...,u_K) = \prod_{k=1}^{K} q_k(u_k)$$
 (8)

Mean field coordinate ascent variational inference (MF-CAVI) is CAVI performed under the mean field assumption (8).

To perform coordinate ascent on the VLB0 under the mean field assumption (8), we iteratively update our variational factors $\{q_k\}_k$ via

$$q_k(u_k) \propto \exp\left\{\mathbb{E}_{q_{-k}}\left[\log p(u_k \mid \boldsymbol{u}_{-k}, \boldsymbol{x}, \boldsymbol{c})\right]\right\}$$
(9)

The derivation uses variational calculus, and is nearly syntactically identical to the derivation of the VBEM updates.

To perform coordinate ascent on the VLB0 under the mean field assumption (8), we iteratively update our variational factors $\{q_k\}_k$ via

$$q_k(u_k) \propto \exp\left\{\mathbb{E}_{q_{-k}}\left[\log p(u_k \mid \boldsymbol{u}_{-k}, \boldsymbol{x}, \boldsymbol{c})\right]\right\}$$
(9)

The derivation uses variational calculus, and is nearly syntactically identical to the derivation of the VBEM updates.

Rk: Note the connection to Gibbs sampling. In the MCMC literature, the distributions $p(u_k \mid \text{rest})$ are known as *full conditionals* or *complete conditionals*. Gibbs sampling involves successive draws from the full conditionals. In mean-field variational inference, we take expectations of the same distributions, in order to update our posterior approximations.

Example: Bayesian Mixture Model

Example: Bayesian Mixture Model

Why variational Bayesian mixture models?

Why Bayes?

All the usual reasons – exploit prior knowledge, protect against overfitting, can use the evidence (or ELBO) for model selection, etc.

Why Variational Bayes?

Traditional MCMC becomes very burdensome for these types of models (mixture models, hidden mixture models, etc.) due to the multimodality in the posterior and the label switching.

See: A comparison of variational approximations for fast inference in mixed logit models

VB Predictive vs. ML Solution

Image Credit: Lukas Burget

- VB was initialized from the ML solution
- VB recovers from ML overfitting and is closer to the true distribution for generating the training data

The Bayesian framework can be used to endow mixture models with many nice properties.

Example: Dirichlet Process Mixture Models (DPMMs) DPMM's have an unbounded number of mixture components. The model automatically adapts its number of components.

- Click here for Demo 1.
- Click here for Demo 2.

Example: Bayesian Mixture Model

Inference algorithm

Example: Bayesian Gaussian Mixture Model

To see the mean field CAVI algorithm (9) in a concrete context, consider a version of the Bayesian Gaussian Mixture Model.

$$\begin{split} \mu_k &\sim \operatorname{Normal}(M_k = 0, V_k = \sigma^2) & k = 1, ..., K \\ c_i &\sim \operatorname{Categorical}(\pi_1, ..., \pi_K) & i = 1, ..., n \\ x_i \mid c_i, \mu &\sim \operatorname{Normal}(\mu_{c_i}, 1) & i = 1, ..., n \end{split}$$

(The model is simple in that it assumes univariate observations and that each mixture component has unit variance.)

The joint density, by chain rule, is

$$p(x,c,\mu) = p(\mu) \prod_{i=1}^{n} p(c_i) p(x_i \mid c_i,\mu)$$

And a mean-field variational family is given by

$$q(c,\mu) = \prod_{k=1}^{K} q(\mu_k) \prod_{i=1}^{n} q(c_i)$$

We apply (9) to determine the coordinate updates for q_{c_i} , the variational factors governing cluster assignments.

$$q(c_{ik}) \propto \exp\left\{\mathbb{E}_{q_{\mu_k}}\left[\log p(c_i = k) + \log p(x_i \mid c_i = k, \mu)\right]\right\}$$
$$\propto \exp\left\{\mathbb{E}_{q_{\mu_k}}\left[\log \pi_k + x_i \mu_k - \frac{1}{2}\mu_k^2\right]\right\}$$
$$\propto \pi_k \exp\left\{x_i \mathbb{E}_{q_{\mu_k}}[\mu_k] - \frac{1}{2}\mathbb{E}_{q_{\mu_k}}[\mu_k^2]\right\}$$

The next slide reveals that the q_{μ_k} are Gaussian, and hence the above expectations are easy to compute.

Note: We abuse notation, and write $q(c_{ik})$ as shorthand for $q(c_i = k)$

Bayesian Gaussian Mixture Model: Updates to mixture component means

Using the same strategy as when updating cluster assignments c_i , we obtain

$$q(\mu_k) \propto \exp\left\{\mathbb{E}_{-q_{\mu_k}}\left[\log p(\mu_k) + \sum_{i=1}^n \log p(x_i \mid c_i = k, \mu)\right]\right\}$$
$$\propto \exp\left\{-\frac{1}{2\sigma^2}\mu_k^2 + \sum_{i=1}^n \mathbb{E}_{q_c}\left[1_{c_i=k}\left(x_i\mu_k - \frac{1}{2}\mu_k^2\right)\right]\right\}$$
$$\propto \exp\left\{\left(\sum_{i=1}^n q(c_{ik})x_i\right)\mu_k + -\frac{1}{2}\left(\frac{1}{\sigma^2} + \sum_{i=1}^n q(c_{ik})\right)\mu_k^2\right\}$$

which is an exponential family distribution with sufficient statistics (μ_k, μ_k^2) and base measure $\propto 1$; hence it is Gaussian.

It is easy to show² that for a Gaussian with mean M and variance V, the natural parameters are given by

$$\eta_1 = \frac{M}{V}, \quad \eta_2 = -\frac{1}{2V}$$

From the last slide, the variational density $q(\mu_k)$ has natural parameters

$$\eta_1 = \left(\sum_{i=1}^n q(c_{ik}) x_i\right), \quad \eta_2 = -\frac{1}{2} \left(\frac{1}{\sigma^2} + \sum_{i=1}^n q(c_{ik})\right)$$

Using this, we can backsolve to determine the updates to the mean and variance of the Gaussian variational density governing the kth cluster mean:

$$M_{k} = \frac{\sum_{i=1}^{n} q(c_{ik}) x_{i}}{1/\sigma^{2} + \sum_{i=1}^{n} q(c_{ik})}, \quad V_{k} = \frac{1}{1/\sigma^{2} + \sum_{i=1}^{n} q(c_{ik})}$$

 2 Indeed, in this course we have seen

Example: Latent Dirichlet Allocation (LDA)

This section, especially the intro, borrows heavily from David Blei's 2012 ICML tutorial.

LDA is a generative probabilistic model of a corpus of documents of text.

LDA assumes:

- There is a set of topics that describe the corpus
- Each document exhibits these topics to varying degrees.

LDA is a generative probabilistic model of a corpus of documents of text.

LDA assumes:

- There is a set of topics that describe the corpus
- Each document exhibits these topics to varying degrees.

So:

- The topics and how they relate to the documents are hidden structure
- The main computational problem is to infer this hidden structure

• Each topic is a distribution over words.

- Each **topic** is a distribution over words.
- Each **document** is a mixture of corpus-wide topics.

- Each topic is a distribution over words.
- Each **document** is a mixture of corpus-wide topics.
- Each word is drawn from one of those topics.

- Each topic is a distribution over words.
- Each **document** is a mixture of corpus-wide topics.
- Each word is drawn from one of those topics.

- Each topic is a distribution over words.
- Each **document** is a mixture of corpus-wide topics.
- Each word is drawn from one of those topics.

Rk: This is a "bag of words" model.

- Each **topic** is a distribution over words.
- Each **document** is a mixture of corpus-wide topics.
- Each word is drawn from one of those topics.

Rk: This is a "bag of words" model.

• In reality, we only observe the documents.

- In reality, we only observe the documents.
- The model structure is hidden.

- In reality, we only observe the documents.
- The model structure is hidden.
- Our goal is to infer the hidden variables; i.e. compute

p(topics, proportions, assignments | documents)

Recall: Dirichlet Distribution

• Dirichlet distribution is *conjugate prior* of Categorical

$$p(\theta \mid \alpha) = \frac{\Gamma(\sum_{i=1}^{K} \alpha_i)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \theta_1^{\alpha_1 - 1} \cdots \theta_k^{\alpha_k - 1}$$

Recall: Dirichlet Distribution

• Dirichlet distribution is conjugate prior of Categorical

$$\rho(\theta \mid \alpha) = \frac{\Gamma(\sum_{i=1}^{K} \alpha_i)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \theta_1^{\alpha_1 - 1} \cdots \theta_k^{\alpha_k - 1}$$

- For symmetric Dirichlet distributions ($\alpha_1 = ... = \alpha_K$), a scalar hyperparameter $\alpha = \sum_k \alpha_k$ controls the shape and sparsity of the θ_d 's. (per-document topic proportions).
 - high α : typical θ_d (from the prior) will be uniform
 - small α : a typical θ_d (from the prior) will be sparse

Recall: Dirichlet Distribution

• Dirichlet distribution is conjugate prior of Categorical

$$p(\theta \mid \alpha) = \frac{\Gamma(\sum_{i=1}^{K} \alpha_i)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \theta_1^{\alpha_1 - 1} \cdots \theta_k^{\alpha_k - 1}$$

- For symmetric Dirichlet distributions ($\alpha_1 = ... = \alpha_K$), a scalar hyperparameter $\alpha = \sum_k \alpha_k$ controls the shape and sparsity of the θ_d 's. (per-document topic proportions).
 - high α : typical θ_d (from the prior) will be uniform
 - small α : a typical θ_d (from the prior) will be sparse

• Likewise, η controls the shape and sparsity of the β_k 's (the topics - distribution over words)

³Interpretation of η : psuedocount of vocabulary words observed across prior topics.

 $^{{\}rm 4}_{\rm Interpretation of } \alpha :$ psuedocount of topics observed across prior documents.

• Fix a vocabulary of V words, and set the number of topics, K.

 $^{{}^{3}}$ Interpretation of $\eta:$ psuedocount of vocabulary words observed across prior topics.

 $^{{\}rm 4}_{\rm Interpretation of \ \alpha:}$ psuedocount of topics observed across prior documents.

- Fix a vocabulary of V words, and set the number of topics, K.
- Set hyperparameters $\eta \in \mathbb{R}^V, \alpha \in \mathbb{R}^K$.

³Interpretation of η : psuedocount of vocabulary words observed across prior topics.

⁴Interpretation of α : psuedocount of topics observed across prior documents.

- Fix a vocabulary of V words, and set the number of topics, K.
- Set hyperparameters $\eta \in \mathbb{R}^V, \alpha \in \mathbb{R}^K$.
- For k in (1, K):
 - Define the *topic* (a distribution over words), $\beta_k \in \mathbb{R}^V \sim \mathsf{Dir}(\eta).^3$

 $^{^3}$ Interpretation of η : psuedocount of vocabulary words observed across prior topics.

⁴ Interpretation of α: psuedocount of topics observed across prior documents.

- Fix a vocabulary of V words, and set the number of topics, K.
- Set hyperparameters $\eta \in \mathbb{R}^V, \alpha \in \mathbb{R}^K$.
- For k in (1, K):
 - Define the *topic* (a distribution over words), $\beta_k \in \mathbb{R}^V \sim \mathsf{Dir}(\eta).^3$
- For *d* in (1, *D*) :
 - Choose (per-document) topic proportions $\theta_d \in \mathbb{R}^K \sim \text{Dir}(\alpha).^4$

³Interpretation of η : psuedocount of vocabulary words observed across prior topics.

⁴ Interpretation of α: psuedocount of topics observed across prior documents.

- Fix a vocabulary of V words, and set the number of topics, K.
- Set hyperparameters $\eta \in \mathbb{R}^V, \alpha \in \mathbb{R}^K$.
- For k in (1, K):
 - Define the *topic* (a distribution over words), $\beta_k \in \mathbb{R}^V \sim \mathsf{Dir}(\eta).^3$
- For *d* in (1, *D*) :
 - Choose (per-document) topic proportions $\theta_d \in \mathbb{R}^K \sim \text{Dir}(\alpha)$.⁴
 - For *n* in (1, *N*_d):
 - Choose the *topic assignment* $z_{d,n} \sim \text{Categorical}_{K}(\theta_{d})$

³Interpretation of η : psuedocount of vocabulary words observed across prior topics.

⁴ Interpretation of α: psuedocount of topics observed across prior documents.

- Fix a vocabulary of V words, and set the number of topics, K.
- Set hyperparameters $\eta \in \mathbb{R}^V, \alpha \in \mathbb{R}^K$.
- For k in (1, K):
 - Define the *topic* (a distribution over words), $\beta_k \in \mathbb{R}^V \sim \mathsf{Dir}(\eta).^3$
- For *d* in (1, *D*) :
 - Choose (per-document) topic proportions $\theta_d \in \mathbb{R}^K \sim \text{Dir}(\alpha)$.⁴
 - For *n* in (1, *N*_d):
 - Choose the *topic assignment* $z_{d,n} \sim \text{Categorical}_{K}(\theta_{d})$
 - Choose word $w_{d,n} \sim \text{Categorical}_V(\beta_{Z_{d,n}})$

 $^{^{3}}$ Interpretation of $\eta:$ psuedocount of vocabulary words observed across prior topics.

⁴ Interpretation of α: psuedocount of topics observed across prior documents.

LDA as a graphical model

Recall:

- Nodes are random variables.
- Shaded nodes are observed.
- Plates indicate replicated variables.
- Each node is conditionally independent from its non-descendants given its parents.

$$p(\boldsymbol{z},\boldsymbol{\theta},\boldsymbol{w},\boldsymbol{\beta} \mid \boldsymbol{\alpha},\boldsymbol{\eta}) = \prod_{k=1}^{K} p(\boldsymbol{\beta}_{k} \mid \boldsymbol{\eta}) \prod_{d=1}^{D} p(\boldsymbol{\theta}_{d} \mid \boldsymbol{\alpha}) \prod_{n=1}^{N} p(\boldsymbol{z}_{d,n} \mid \boldsymbol{\theta}_{d}) p(\boldsymbol{w}_{d,n} \mid \boldsymbol{z}_{d,n}, \boldsymbol{\beta}_{k})$$

$$Categorical Categorical (10)$$

Remark. Note that LDA is a "bag-of-words" model; i.e. the probability of a word (or document) is invariant to word order.

We approximate the posterior $p(\theta \mid \boldsymbol{z}, \boldsymbol{w})$ using mean field variational inference (8). In particular, we assume that the variational family Q has a density which factorizes as

$$q = q_{\delta}(\theta) q_{\tau}(\mathbf{z})$$

$$= \prod_{d=1}^{D} \underbrace{q_{\delta}(\theta_{d})}_{\text{Dirichlet}} \prod_{n=1}^{N_{d}} \underbrace{q_{\tau_{n}}(\mathbf{z}_{d,n})}_{\text{Categorical}}$$
(11)

Note We are treating the topics β_k as a constant for simplicity. For a fuller treatment, see Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.

Update equations

LDA coordinate ascent update equations

$$\begin{split} \delta_{d,k} &= \alpha_k \\ \text{var. dirichlet (topic proportion)} &= \alpha_k \\ \text{prior counts} + \sum_{n=1}^{N_d} & \tau_{d,n,k} \\ \text{var. expected assignment} & \sum_{\substack{\tau_{d,n,k} \\ \text{var. categorical (topic assignment)}}} & \propto \exp\left\{\mathbb{E}_{q_{\delta}(\theta)}\left[\log \theta_{d,k}\right]\right\} \\ \beta_{k,[w_{d,n}]} \\ \text{var. "prior" topic assignment} & \text{likelihood} \\ &= \left(\Psi(\delta_k) - \Psi(\sum_j \delta_j)\right) \\ \beta_{k,[w_{d,n}]} & (13) \end{split}$$

where $\Psi(\cdot)$ is the first derivative of the log Γ function.

- Derivable via VBEM (see notes).
- Characteristic form: latent variable update depends on the data, global parameter update depends on the latent variable

Note We are treating β as a constant for brevity. We could fit also β to the data via VEM. (VEM does "empirical Bayes" for you.) More generally, we could model β as a random variable with VBEM. For a fuller treatment, see Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.

The role of analytical computations

The varational categorical update crucially hinges on facts about the exponential family.

The varational categorical update crucially hinges on facts about the exponential family.

In particular, the meat of the proof of the variational categorical update depends crucially on the fact that the Dirichlet of a single probability component is given by

$$\mathbb{E}_{q_{\delta}(\theta)}\left[\log \theta_{i}\right] = \Psi(\delta_{i}) - \Psi(\sum_{k} \delta_{k})$$
(14)

where $\Psi(\cdot)$ is the first derivative of the log Γ function. This fact is justified via facts about the exponential family (such as that the derivative of the log normalization factor with respect to the natural parameter is equal to the sufficient statistic).

The varational categorical update crucially hinges on facts about the exponential family.

In particular, the meat of the proof of the variational categorical update depends crucially on the fact that the Dirichlet of a single probability component is given by

$$\mathbb{E}_{q_{\delta}(\theta)}\left[\log \theta_{i}\right] = \Psi(\delta_{i}) - \Psi(\sum_{k} \delta_{k})$$
(14)

where $\Psi(\cdot)$ is the first derivative of the log Γ function. This fact is justified via facts about the exponential family (such as that the derivative of the log normalization factor with respect to the natural parameter is equal to the sufficient statistic).

For many more complicated models (e.g. VAE), such expectations $_{(even the variational ones)}$ are intractable, and so we won't be able to use CAVI.

LDA Example Inference

- Data: 17K Science documents from 1990-2000 (11M words, 20K unique terms)
- Model: 100-topic LDA model, fit using variational inference

1	2	3	4	5
dna	protein	water	says	mantle
gene	cell	climate	researchers	high
sequence	cells	atmospheric	new	earth
genes	proteins	temperature	university	pressure
sequences	receptor	global	just	seismic
human	fig	surface	science	crust
genome	binding	ocean	like	temperature
genetic	activity	carbon	work	earths
analysis	activation	atmosphere	first	lower
two	kinase	changes	years	earthquakes
6	7	8	9	10
end	time	materials	dna	disease
article	data	surface	rna	cancer
start	two	high	transcription	patients
science	model	structure	protein	human
readers	fe .	temperature	site	gene
service	system	molecules	binding	medical
news	autor .	chemical	sequence	studies
card	atteast	molecular	proteins	drug
circle		10	specific	normal
letters	_	university	sequences	drugs
11	12	13	14	15
vears	species	protein	cells	space
million	evolution	structure	cell	solar
ago	population	proteins	virus	observations
age	evolutionary	two	hiv	earth
university	university	amino	infection	stars
north	populations	binding	immune	university
early	natural	acid	human	mass
fig	studies	residues	antigen	sun
evidence	genetic	molecular	infected	astronomers
record	biology	structural	viral	telescope
16	17	18	19	20
fax	cells	energy	research	neurons
manager	cell	electron	science	brain
science	gene	state	national	cells
aaas	genes	light	scientific	activity
1 A state of the state of th		and a second second	eclectiste	fin
advertising	expression	quantum		
sales	development	physics	new	channels
sales member	expression development mutant	physics electrons	new states	channels university
advertising sales member recruitment	expression development mutant mice	physics electrons high	new states university	channels university cortex
advertising sales member recruitment associate	expression development mutant mice fg	physics electrons high laser	now states university united	channels university cortex neuronal

Application: Anomaly Detection in Network Traffic Traces

LDA can be applied to *documents* that can be just about anything!

IP Addresses

An **ip address**, like 72.194.113.177, is (roughly) an address assigned to each device connected to the Internet. My laptop has one, my iphone has one, every website (Google, Apple, etc.) has one, etc.

One application (Newton, B. D. (2012). Anomaly Detection in Network Traffic Traces Using Latent Dirichlet Allocation.)

- "Documents" = the session of a specific IP address
- "words" = the full external IP address and port number combinations.
- The "words" in each "document" are counted and then this data set is processed by LDA to yield a compact model of the data.

Q: Ok, but how to perform anomaly detection? Q: What assumptions are being made by LDA?

I analyzed each of the anomalies detected in the last half hour of the trace [...]. The second anomaly with nearly 300 thousand messages exchanged with an SMTP server, is a bit more troubling. It is possible that this was actually a malicious client participating in a Mailbomb attack. According to the DARPA Intrusion Detection Attacks Database [8] a Mailbomb attack "is one in which the attacker sends many messages to a server, overflowing that server's mail queue and possibly causing a system failure."

Automatic Differentiation Variational Inference (ADVI)

The ELBO (Evidence Lower Bound): Parametric View

$$L(\lambda) = \mathbb{E}_{q_{\lambda}(z)} \bigg[\log p(x, z) - \log q(z) \bigg]$$

The ELBO (Evidence Lower Bound): Parametric View

$$L(\lambda) = \mathbb{E}_{q_{\lambda}(z)} \bigg[\log p(x, z) - \log q(z) \bigg]$$

Traditionally, we optimize via coordinate-ascent (CAVI).

$$\widehat{\lambda}_{t+1} = \widehat{\lambda}_t + \rho_t \nabla L(\widehat{\lambda}_t)$$

The ELBO (Evidence Lower Bound): Parametric View

$$L(\lambda) = \mathbb{E}_{q_{\lambda}(z)} \bigg[\log p(x, z) - \log q(z) \bigg]$$

Traditionally, we optimize via coordinate-ascent (CAVI).

$$\widehat{\lambda}_{t+1} = \widehat{\lambda}_t + \rho_t \nabla L(\widehat{\lambda}_t)$$

Problem: Each model's VI algorithm is⁵ a snowflake.

- Requires model-specific computations
- Must pick a good q.

⁵ if it exists

Differentiable Probability Models

GOAL: Approximate the posterior $p(\theta \mid x) \propto p(x \mid \theta) p(\theta)$

The class of probability models that ADVI supports

- Dataset $\mathbf{x} = x_{1:N}$ where each x_n is a realization of a discrete or continuous random variable
- Latent variables θ are continuous
- $\nabla_{\theta} \log p(\mathbf{x}, \theta)$ exists within the support of the prior

$$\Theta:=\mathsf{supp}(p(\boldsymbol{\theta}))=\{\boldsymbol{\theta}\mid \boldsymbol{\theta}\in\mathbb{R}^{K} \text{ and } p(\boldsymbol{\theta})>0\}\subseteq\mathbb{R}^{K}$$

INCLUDES Generalized linear models Mixture models Topic models Linear dynamic systems Gaussian process models Deep exponential families Excludes Ising model Sigmoid belief networks Bayesian nonparametric models

Step 1: Transforming to unbounded support

We define a differentiable bijection to give the parameters unbounded support.

$$\mathcal{T}: \Theta \to \mathbb{R}^{\kappa}$$
 $\theta \mapsto \zeta$

We use *change of variables* to express the joint density in the new space.

$$\frac{\mathsf{p}(\mathbf{x},\boldsymbol{\zeta})}{\mathsf{p}(\mathbf{x},\boldsymbol{\zeta})} = p(\mathbf{x},T^{-1}(\boldsymbol{\zeta})) \left| \det J_{T^{-1}}(\boldsymbol{\zeta}) \right|$$

transformed original space

So in the new space, the ELBO becomes

$$\mathcal{L}(oldsymbol{\lambda}) = \mathbb{E}_{q(\zeta;oldsymbol{\lambda})} igg[\left| \log pig(oldsymbol{x}, \mathcal{T}^{-1}(\zeta)ig) + \log \left| \det J_{\mathcal{T}^{-1}}(\zeta) \right| \ igg] + \mathbb{H}[q(\zeta;oldsymbol{\lambda})]$$

Step 1: Transforming to unbounded support

We define a differentiable bijection to give the parameters unbounded support.

$$\mathcal{T}: \Theta \to \mathbb{R}^{\kappa}$$
 $\theta \mapsto \zeta$

We use *change of variables* to express the joint density in the new space.

$$p(\boldsymbol{x},\boldsymbol{\zeta}) = p(\boldsymbol{x},T^{-1}(\boldsymbol{\zeta})) \left| \det J_{T^{-1}}(\boldsymbol{\zeta}) \right|$$

transformed original space

So in the new space, the ELBO becomes

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(\zeta;\lambda)} igg[\left| \log pig(x, T^{-1}(\zeta) ig) + \log \left| \det J_{T^{-1}}(\zeta) \right| \
ight] + \mathbb{H}[q(\zeta;\lambda)]$$

✓ Model-independent variational factors.

X Cannot compute the gradient of the cost function

Step 1: Transforming to unbounded support

We define a differentiable bijection to give the parameters unbounded support.

$$\mathcal{T}: \Theta \to \mathbb{R}^{\kappa}$$
 $\theta \mapsto \zeta$

We use *change of variables* to express the joint density in the new space.

$$p(\boldsymbol{x},\boldsymbol{\zeta}) = p(\boldsymbol{x},T^{-1}(\boldsymbol{\zeta})) \left| \det J_{T^{-1}}(\boldsymbol{\zeta}) \right|$$

transformed original space

So in the new space, the ELBO becomes

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(\zeta;\lambda)} igg[\left| \log pig(x, T^{-1}(\zeta) ig) + \log \left| \det J_{T^{-1}}(\zeta) \right| \
ight] + \mathbb{H}[q(\zeta;\lambda)]$$

✓ Model-independent variational factors.

X Cannot compute the gradient of the cost function (Think: Why can't we just

approximate the term by sampling?)

Step 2: The reparameterization trick

Example: We can *re-parameterize* the Gaussian $\zeta \sim \mathcal{N}(\mu, \Sigma)$, such that its dependence on the original parameter $\lambda = (\mu, \Sigma)$ is transferred to a (deterministic) standardization function, S_{λ}

- Factorize $\Sigma = \boldsymbol{L} \boldsymbol{L}^{T}$.
- The standardized random variable is

$$oldsymbol{\epsilon} := \mathcal{S}_{oldsymbol{\lambda}}(oldsymbol{\zeta}) = oldsymbol{L}^{-1}(oldsymbol{\zeta}-oldsymbol{\mu}), \hspace{1em} ext{where} \hspace{1em} oldsymbol{\epsilon} \sim \mathcal{N}(0,oldsymbol{I})$$

• The unstandardized random variable can be recovered via

$$\zeta = S_{oldsymbol{\lambda}}^{-1}(\epsilon)$$

ADVI ELBO

$$\mathcal{L}(\boldsymbol{\lambda}) = \mathbb{E}_{\mathcal{N}(\boldsymbol{\epsilon};\boldsymbol{0},\boldsymbol{l})} \bigg[\log p \bigg(\mathbf{x}, \, \boldsymbol{T}^{-1} \big(\boldsymbol{S}_{\boldsymbol{\lambda}}^{-1}(\boldsymbol{\epsilon}) \big) \bigg) + \log \, \bigg| \, \det J_{T^{-1}} \big(\boldsymbol{S}_{\boldsymbol{\lambda}}^{-1}(\boldsymbol{\epsilon}) \big) \bigg| \, \bigg] + \mathbb{H}[q(\boldsymbol{\zeta};\boldsymbol{\lambda})]$$

Step 2: The reparameterization trick

Example: We can *re-parameterize* the Gaussian $\zeta \sim \mathcal{N}(\mu, \Sigma)$, such that its dependence on the original parameter $\lambda = (\mu, \Sigma)$ is transferred to a (deterministic) standardization function, S_{λ}

- Factorize $\Sigma = \boldsymbol{L} \boldsymbol{L}^{T}$.
- The standardized random variable is

$$oldsymbol{\epsilon} := \mathcal{S}_{oldsymbol{\lambda}}(oldsymbol{\zeta}) = oldsymbol{L}^{-1}(oldsymbol{\zeta}-oldsymbol{\mu}), \hspace{1em} ext{where} \hspace{1em} oldsymbol{\epsilon} \sim \mathcal{N}(0,oldsymbol{I})$$

• The unstandardized random variable can be recovered via

$$\zeta = S_{oldsymbol{\lambda}}^{-1}(\epsilon)$$

ADVI ELBO

$$\mathcal{L}(\boldsymbol{\lambda}) = \mathbb{E}_{\mathcal{N}(\boldsymbol{\epsilon}; 0, I)} \bigg[\log p \bigg(\mathbf{x}, T^{-1} \big(S_{\boldsymbol{\lambda}}^{-1}(\boldsymbol{\epsilon}) \big) \bigg) + \log \bigg| \det J_{T^{-1}} \big(S_{\boldsymbol{\lambda}}^{-1}(\boldsymbol{\epsilon}) \big) \bigg| \bigg] + \mathbb{H}[q(\boldsymbol{\zeta}; \boldsymbol{\lambda})]$$

Model-independent variational factors.

✓ Can estimate the gradient of the expectation.

Inference can be substantially more efficient

Results with a non-negative matrix factorization model applied to the Frey Faces dataset.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017). Automatic differentiation variational inference. The Journal of Machine Learning Research, 18(1), 430-474.

Questions?