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Some questions

What is variational inference?

e When is it useful? Can it even be useful to frequentists?
e How can we apply VI to inference problems?

e What is automatic differentiation variational inference (ADVI)?



Overview



lllustration

Here we approximate an  probability distribution by find-
ing the best approximation from tractable family Q@ =
{10-component Gaussian mixture models}

Ranganath, R., Gerrish, S., & Blei, D. (2014, April). Black box variational inference. In Artificial Intelligence and Statistics (pp. 814-822).



Overview

The problem: marginalization



Parametric statistical models

Parametric statistical models
A parametric statistical model posits

e x: observed data
e 0O: parameters

e z (possibly): latent random variables

Parameters vs. latent variables
Both z and 6 are unobserved, but only the dimensionality of z increases
with the number of samples in x.

Frequentist vs. Bayesian variants
Frequentists take parameters 0 to be fixed (but unknown) constants,
whereas the Bayesians take 6 to be random variables.



Three statistical modeling paradigms of interest

Let us consider models that present an intractable marginal.

Bayesian (non-latent variable) models

Example: Any model with a non-conjugate prior
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Three statistical modeling paradigms of interest

Let us consider models that present an intractable marginal.

Bayesian (non-latent variable) models

Example: Any model with a non-conjugate prior

Bayesian latent variable models
Examples: Bayesian Mixture Model, Bayesian Hidden Markov Model,
Latent Dirichlet Allocation,

Frequentist latent variable models
Examples: Hidden Markov Models (aithough we have handied this case), Variational

Autoencoders (e cassical kind) , Bayesian Generalized Linear Mixed Effects
Models



Statistical inference

In general
We must compute the marginal

p(x|0)= [ p(x.ulc)du M)
where

e x: observed data

e u: unobserved random variables

e c: constant values



The need for marginalization in statistical inference

Inferential Target

goal marginal
Model p(x | c)
Bayesian p(0 | x) p(x) = /p(B,x) do
(non-latent)
Bayesian p(z,0 | x) p(x) = /p(O,x,z) dl dz
latent

Frequentist

latent

argmaxg p(x | 0)



Problem: These marginalizations may be intractable

Example: Hidden Markov Model

Define T : the state transition matrix
€j : the jth emission distribution, j =1,..., k

7 . the initial latent state distribution

p(x10) =" p(x,z|0)

z

> p(x,2]0)

= Z Tz €2(%1) Ta,z €2,() Taz -5 Tzy,z, €2,(%n)

has O(n k") complexity. A

Consider e.g. that (k,n) = (5,100) — 1072 calculations. &
10



Overview

The technique: functional optimization

11



Towards variational inference

We construct a lower bound on the target marginal.

Variational Lower Bound (VLBO)
Let g be any probability density over u. Then:

Inp(x|c):|n/p(u,x|c)du

:In/q(u)Wdu

Jenszen's/q(u) n <P(""|C)) du

q(u)
:= VLBO(q)

12



Variational Inference: Maximizing the VLBO

Variational Inference

Variational inference (V1) proceeds by finding g*, the variational density
in tractable family Q which maximizes the VLBO:

g* = argmax VLBO(q)
solution qeQ

approximating family

Rk: Note that we are trying to optimize over a function space (of a particular kind).

13



lllustration

Here we approximate an  probability distribution by find-
ing the best approximation from tractable family Q@ =
{10-component Gaussian mixture models}

Ranganath, R., Gerrish, S., & Blei, D. (2014, April). Black box variational inference. In Artificial Intelligence and Statistics (pp. 814-822). 14



Overview

Decompositions: Intuition on the cost
function

15



Decompositions of the VLBO

Energy/Entropy Decomposition of the VLBO
By simply appealing to properties of the logarithm and the definition of
expectation, we obtain

VLBO (q) :/q(u) Inp(x,u|c)du —/q(u) Ing(u) du

=Eq[log p(x,u | €)] + H[q(u)]

energy entropy

Q What is the effect of the entropy term?

16



Decompositions of the VLBO

Likelihood/Prior Decomposition of the VLBO

By applying the chain rule to the preceding, and then reapplying the
definition of KL divergence, we obtain another nice form

=Eq[logp(x,u | c)] + H[q(u)]

=Eq[logp(x,u | €)] — Eq[log q(u)]

Eq[logp(x | u,c) ] [Iogp (u] c)] [Iog q(u)}
=Eq[logp(x | u, €)] —KL(g(u) || p(u | €))

expected log likelihood dlvergence from prior

E
+E
KL
Note that the first term grows in magnitude as the number of samples

increases; thus, the prior’s influence diminishes asymptotically.

17



Overview

The posterior perspective

18



Maximizing the VLBO minimizes the KL divergence (o e posterion

By definition, the KL divergence from the target posterior to the
variational density is given by

q(u) }

00(w) | plu | x.€)) = B tog A

By the chain rule, we get

KL(q(u) || p(u | x, €)) = Eqlog q(u)] — Eqllog p(x, u | €)]  +log p(x | €)
energy/entropy decomposition

= — VLBO (q) + constant

Discuss: What is the optimal variational density?
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Maximizing the VLBO minimizes the KL divergence (o we posterion

By definition, the KL divergence from the target posterior to the

variational density is given by

q(u) }

KL(q(u) || p(u | x.€)) = Eq["’g pu | x, )

By the chain rule, we get

KL(g(u) || p(u | x, €)) = Eqlog q(u)] — Eqllog p(x, u | €)]  +logp(x | c)
energy/entropy decomposition

= — VLBO(q) -+ constant

The optimal variational density

The optimal variational density, ¢*(u) is the target posterior density
p(u | x, c) when the underlying variational family Q is unrestricted

20



Overview

Summary
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Summary

e VI is a general tool. It is useful whenever you face intractable

marginals.

Model Inferential Intractable Variational ~ Posterior
goal marginal density

General case | infer about 6 p(x | c) q(u) p(u| x,c)
Bayesian p(0 | x) p(x) = /p(G,x) de q(0) p(6 | x)
(non-latent)
Bayesian p(z,0 | x) p(x) = /p(G7 x,z)d0 dz q(z,0) p(z,0 | x)
latent
Frequentist argmaxg p(x | 0) p(x|0) = /p(x,z | 0) dz q(z2) p(z | x,0)

latent
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Summary

e VI is a general tool. It is useful whenever you face intractable

marginals.
Model Inferential Intractable Variational ~ Posterior
goal marginal density

General case | infer about 6 p(x | c) q(u) p(u| x,c)
Bayesian p(0 | x) p(x) = /p(G,x) de q(0) p(6 | x)
(non-latent)
Bayesian p(z,0 | x) p(x) = /p(G7 x,z)d0 dz q(z,0) p(z,0 | x)
latent
Frequentist argmaxg p(x | 0) p(x|0) = /p(x,z | 0) dz q(z2) p(z | x,0)
latent

Note: Orange denotes the primary target, Blue denotes a helper.
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How does VI accommodate the goal of statistical inference?

Given selection of variational family Q, the optimal variational density g*

The posterior perspective

e For Bayesian models: ... is the family member which is closest to
the
e For frequentist models: ... provides the best substitution

q*(z) ~ p(z | x,0°“") into the E-step of the EM algorithm!

1See next section for more information. 23



How does VI accommodate the goal of statistical inference?

Given selection of variational family Q, the optimal variational density g*

The posterior perspective

e For Bayesian models: ... is the family member which is closest to
the
e For frequentist models: ... provides the best substitution

q*(z) ~ p(z | x,0°“") into the E-step of the EM algorithm!

The marginal perspective

e For frequentist models: ... makes the VLBO best approximate the
, which is what we wanted to
maximize.
e For Bayesian models: ... raises the (approximate) evidence term
p(x) (the term used for Bayesian model comparison) as high as
possible.

1See next section for more information. 23



Overview

Evaluation (in context)
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Approximate Bayesian Inference

e The two most prominent strategies for approximating intractable
posteriors are VI and Markov Chain Monte Carlo (MCMC).

e MCMC uses sampling. We construct a Markov chain over model
parameters. The stationary distribution is the posterior. We
approximate the posterior with samples.

e VI uses approximation. A tractable approximating family is chosen,
and parameters are optimized to be close to the posterior.

25



ariational Inference vs MCMC

Variational Inference scales better to large datasets.

O
—-300
—600 FEEEEE N
It —_ cAvI
=900 .- - = = NUTS (Hoffman and Gelman, 2014
0 50 100 150 200 250

Figure 1: Comparison of CAVI to a Hamiltonian Monte Carlo-based sampling
technique. The plot shows log predictive test set accuracy by training time
(minutes). CAVI fits a Gaussian mixture model to 10,000 images in less than a
minute.

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American statistical
Association, 112(518), 859-877.
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Variational Inference vs. Expectation Propagation

Let us fix a distribution P and consider two optimization strategies

Variational Inference

Q. _gFxclusive
Minimizing '
KL(Q[|P)

v

Expectation Propagation

T Inclusive
Minimizing
KL(P1Q) ]
25 ios 23] Q P

Image Credit: Tushar Tank 27
Q: What does this say about VI? Which one would you prefer to use?



Shortcoming: VI underestimates variance of the true posterior

X2
Target distribution
Variational approximation

X4

>

00(w) | plu | x,€)) = o tog A
Intuition

e If g(u) is low, then we don't care (because of the expectation).
e If g(u) is high and p(x, u | c) is low, then we pay a price 28



Modern application

We can compose probabilistic graphical models with neural networks to
exploit their complementary strengths.

(a) Data (b) GMM () Density net (VAE) (d) GMM SVAE

The resulting model is expressive, but also interpretable/decomposable.

Johnson, M., Duvenaud, D. K., Wiltschko, A., Adams, R. P., & Datta, S. R. (2016). Composing graphical models with neural networks
for structured representations and fast inference. In Advances in neural information processing systems (pp. 2946-2954). 29



Variational Inference and
Expectation Maximization

30



Expectation Maximization (EM)

The EM algorithm refines an initial guess 6 via the recursion
0'**Y) = argmax, Eoz | x,00) {In p(x, z | 0)}

until convergence to a local optimum.
Example: Gaussian Hidden Markov Model
E-step: Compute p; := p(z; | x,-,0(t)) via the forward-backward

algorithm.

M-step: Just a computation of empirical means and variances:
> x; > (xi = B = )T

~(t) ; i(f) _ i

31



EM from the perspective of VI

For a frequentist latent variable model, the VLBQis

VLBO (q;,0) = Eq|log p(x, z | 0)] + H[q(2)]
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EM from the perspective of VI

For a frequentist latent variable model, the VLBQis
VLBO (q;,0) = Eq|log p(x, z | 0)] + H[q(2)]

Using coordinate ascent (i the sense of variational caleutus) , We get the following update

equations:

q update : q{""V) = argmax,, VLBO(q,;6")) (2)
6 update : 9D = argmax, VLBO (q{'*Y); 6) (3)

As argued earlier, we can solve the g update exactly by setting

it = p(z | x;61)
in which case the 0 update becomes (uhar?)

O(H_l) = argmax, Ep(z | x,00)) |:|n P(X7 z | 0):| (4)

which is precisely the EM algorithm. 32



EM as coordinate ascent on the VLBO

e If O unrestricted, we have EM
e What if we restrict O 7

33



Variational Expectation Maximization (VEM)

Consider a frequentist latent variable model. Since we don't always have
access to p(z | x,0), we may restrict our variational family Q to some
convenient form. In this case, coordinate ascent on the VLBOis given by:

gltt) = argmax, o VLBO(qy; G(t))

z

0D = argmax, E Pn p(x,z | 0)}

which generalizes the EM algorithm.

34



Variational Bayes Expectation Maximization (VBEM)

Consider a Bayesian latent variable model. So we need to swap p(x, z, )
for p(x,z | @) in the VLBO.

If we construct the variational density with the factorization
q(z,0) = q:(2)qe(0)
then the VLBO becomes
p(z,0,x)
VLBO (g ( //q z)qo(0 n( do dz
$ : (2)a0(0)
(5)

We can perform coordinate ascent on the VLBOwith respect to the
densities g, and qg:

VB-E step: g{t*Y) = argmax,, VLBO(q.; q((;))
VB-M step : qétﬂ) = argmax,, VLBO (a8 qo)

35



VBEM: Derivation

See notes.

36



Variational Bayes Expectation Maximization (VBEM)

The coordinate ascent equations have the form
VB-E step : qgtﬂ) X exp (Eq(f)[ln p(x,z | 0)]) (6)
6
VB-M step : q‘(gtﬂ) x p(0)exp (Eq(z) [In p(x,z | 0)}) (7)

Prior-likelihood decomposition

Bayes' rule

p(0 | x) o< p(0) p(x | )

posterior prior likelihood

VB-M update

(t+1)
o) x p(0) exp (E o[ Inp(x,z | 6)]
variational posterior prior

expected likelihood under variational distribution

37



VI and EM: Summ

Variational inference can be considered as a generalization of the
expectation maximization algorithm (which is generally used by
frequentists). It

e relaxes the need for tractable computation of the posterior
distribution p(z | x, ).

e relaxes the assumption that 0 is a deterministic variable; variational
calculus lets us do coordinate ascent on the distribution governing 6.

38



Coordinate Ascent Variational
Inference (CAVI)

39



Coordinate Ascent Variational Inference (CAVI)

Coordinate ascent variational inference (CAVI) is a general approach to
fitting models using VI.

This approach generalizes VBEM.

40



Mean Field Coordinate Ascent Variational Inference (MF-

CAVI)

Mean field variational families

A variational family Q is mean field if it factorizes

q(uy, ..., ux) = qu(uk) (8)
k=1

Mean field coordinate ascent variational inference (MF-CAVI) is CAVI
performed under the mean field assumption (8).

41



Update equations for MF-CAVI

To perform coordinate ascent on the VLBO under the mean field
assumption (8), we iteratively update our variational factors {qx }« via

gr(uk) o< exp {Eq_k {Iog p(u | u_g, x, c)} } (9)

The derivation uses variational calculus, and is nearly syntactically
identical to the derivation of the VBEM updates.

42



Update equations for MF-CAVI

To perform coordinate ascent on the VLBO under the mean field
assumption (8), we iteratively update our variational factors {qx }« via

gr(uk) o< exp {Eq_k {Iog p(u | u_g, x, c)} } (9)

The derivation uses variational calculus, and is nearly syntactically
identical to the derivation of the VBEM updates.

Rk: Note the connection to Gibbs sampling. In the MCMC literature, the distributions p(uy | rest) are known as full conditionals or
complete conditionals. Gibbs sampling involves successive draws from the full conditionals. In mean-field variational inference, we take
expectations of the same distributions, in order to update our posterior approximations.
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Example: Bayesian Mixture
Model

43



Example: Bayesian Mixture
Model

Why variational Bayesian mixture
models?

a4



Why variational Bayesian mixture models?

Why Bayes?
All the usual reasons — exploit prior knowledge, protect against
overfitting, can use the evidence (or ELBO) for model selection, etc.

Why Variational Bayes?

Traditional MCMC becomes very burdensome for these types of models
(mixture models, hidden mixture models, etc) dU€ to the multimodality in the posterior and
the label switching.

See: A comparison of variational approximations for fast inference in mixed logit models

45



VB Predictive vs. ML Solution

-100 -5 -5.0 -25 00 25 5.0 75 100

Image Credit: Lukas Burget

e VB was initialized from the ML solution
e VB recovers from ML overfitting and is closer to the true

distribution for generating the training data

46



Extensions of Bayesian Mixture Models

The Bayesian framework can be used to endow mixture models with
many nice properties.

Example: Dirichlet Process Mixture Models (DPMMs)

DPMM'’s have an unbounded number of mixture components.
The model automatically adapts its number of components.

e Click here for Demo 1.

e Click here for Demo 2.

47


https://scikit-learn.org/stable/auto_examples/mixture/plot_concentration_prior.html#sphx-glr-auto-examples-mixture-plot-concentration-prior-py
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm.html#sphx-glr-auto-examples-mixture-plot-gmm-py

Example: Bayesian Mixture
Model

Inference algorithm

48



Example: Bayesian Gaussian Mixture Model

To see the mean field CAVI algorithm (9) in a concrete context, consider
a version of the Bayesian Gaussian Mixture Model.

px ~ Normal(My = 0, Vi = 0?) k=1,....K
¢; ~ Categorical(ry, ..., Tk) i=1,...n
x; | ¢iy ;o ~ Normal(pg, 1) i=1,..,n

(The model is simple in that it assumes univariate observations and that each mixture component has unit variance.)

The joint density, by chain rule, is
p(x,c,p) = HPC, (xi | ci, p)
And a mean-field variational family is given by

K n
e, 1) =[] a(u) H q(c)

49



Example: Bayesian Gaussian Mixture Model

We apply (9) to determine the coordinate updates for g, the variational
factors governing cluster assignments.

q(cik) o< exp {Eq,‘,k {log p(ci = k) +log p(xi | c; = k, u)} }
1,
oc exp § Eq,, log Tk + Xipon — E“k

1
oo {xEq,, ] - 3o, 1}

The next slide reveals that the g,, are Gaussian, and hence the above
expectations are easy to compute.

Note: We abuse notation, and write g(cjy ) as shorthand for g(c; = k)

50



Bayesian Gaussian Mixture Model:

Updates to mixture component means

Using the same strategy as when updating cluster assignments ¢;, we
obtain

o) o 50 { B, log ) + élog Pl = ko] |

1 . 1
x exp{ - ﬁﬂi + Zch {1c,-—k (Xiﬂk - 2!&)} }
i=1
S oo 1(1 N~ oy),2
cexpy | Do alew)x e + —5(—+ Zq(clk) 12

i=1 i=1

which is an exponential family distribution with sufficient statistics
(i, 12) and base measure o 1; hence it is Gaussian.
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Bayesian Gaussian Mixture Model:

Updates to mixture component means

It is easy to show? that for a Gaussian with mean M and variance V, the
natural parameters are given by
M 1
m = V; 2 = _W

From the last slide, the variational density g(/x) has natural parameters
n 1 1 n
m= (et ). m=—3(7+ X otw)
= i=

Using this, we can backsolve to determine the updates to the mean and
variance of the Gaussian variational density governing the kth cluster
mean:
>y qlci)xi 1
Mk = > n ) Vk = % n
1/o2 + 37— q(ci) /0% + 3 i1 q(ci)

Indeed, in this course we have seen

2
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Example: Latent Dirichlet
Allocation (LDA)
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Overview

LDA is a generative probabilistic model of a corpus of documents of text.

LDA assumes:

e There is a set of topics that describe the corpus

e Each document exhibits these topics to varying degrees.
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Overview

LDA is a generative probabilistic model of a corpus of documents of text.

LDA assumes:

e There is a set of topics that describe the corpus

e Each document exhibits these topics to varying degrees.

So:

e The topics and how they relate to the documents are hidden
structure

e The main computational problem is to infer this hidden structure
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Topics
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e Each topic is a distribution over words.

e Each document is a mixture of corpus-wide topics.
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e Each topic is a distribution over words.

e Each document is a mixture of corpus-wide topics.

e Each word is drawn from one of those topics.
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e Each topic is a distribution over words.

e Each document is a mixture of corpus-wide topics.

e Each word is drawn from one of those topics.

Rk: This is a “bag of words” model.
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Topics Documents ;
assignments
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evolve 0.01
organism 0.01

L

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, OR
Hou s does

re not all that far apart ially in
75.00

more than just

brain 0.04
neuron  0.02
nerve  0.01

/

data 0.02
number  ©0.02
computer 0.01

/

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York, Stripping down. Computer anlysis yields an osti-
May 810 12. mate of the minimurm modern and ancient genomes

SCIENCE s VOL. 272 » 24 MAY 19%

e Each topic is a distribution over words.
e Each document is a mixture of corpus-wide topics.
e Each word is drawn from one of those topics.

Rk: This is a “bag of words” model.

Source: David Blei, 2012 ICML Tutorial
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Topic proportions and

Topics Documents assignments

Seeking Life’s Bare (Genetic) Necessities
cotn e :

Fow many genes docs an

survive! Last week at the

ing, Cold Spring Harbor, New York,
May 81012

Stripping down. Computer analysis eids an esti
mate of the minimum modern and ancient genomes.

SCIENCE » VOL 272 » 24 MAY 1996

e In reality, we only observe the documents.
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. Topic proportions and
Topics Documents assignments

Seeking Life’s Bare (Genetlc) Necessities

ly in
e b

COLD SPRING HARBOR, NEW YORK—  “are

Um\u sity in 5 ved o)
T But coming up with a1 comT

=
=

L > * Genome Mapping and Sequenc- K
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis JiE1cs an est
May 810 12 mate of the minimum modern and ancient genomes.
SCIENCE » VOL 272 » 24 MAY 1996
T
R

In reality, we only observe the documents.
e The model structure is hidden.



Topic proportions and

Topic: Document: s
opics ocuments assignments
Seeking Life’s Bare (Genetlc) Necessntles
HARBOR, NEW YORK— are not all thar far in
L —
\_/
Ll = e
1o Col S Haror N VorkStigingdown, e nlys Mo
Ny a0 15 il o e it fodor an i Gonars.
SCIENCE » VOL, 272 » 24 MAY 196
Y
o
\_/

In reality, we only observe the documents.
e The model structure is hidden.
e Qur goal is to infer the hidden variables; i.e. compute

p(topics, proportions, assignments | documents)
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Recall: Dirichlet Distribution

e Dirichlet distribution is conjugate prior of Categorical

F(Z/K:I ai)ealfl gl
k

0| )= 1
POTO) = TE Ta
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Recall: Dirichlet Distribution

e Dirichlet distribution is conjugate prior of Categorical
K
r(zi:l O[")ealfl L eak—l
k 1 k
[Ti= (o)

e For symmetric Dirichlet distributions (a1 = ... = ak), a scalar
hyperparameter a = ), ay controls the shape and sparsity of the

p(0 | a) =

Qd'S. (per-document topic proportions) .
e high a: typical 6y (vom the prioy Will be uniform
e small a: a typical Oy (from the priony Will be sparse

a =100 a=10 a=1 a=0.1 a=0.01

TITITIITL atretlntls .Hm.m {M ..............
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Recall: Dirichlet Distribution

e Dirichlet distribution is conjugate prior of Categorical
K
r(zi:l O[")ealfl L eak—l
k 1 k
[Ti= (o)

e For symmetric Dirichlet distributions (a1 = ... = ak), a scalar
hyperparameter a = ), ay controls the shape and sparsity of the

p(0 | a) =

Qd'S. (per-document topic proportions) .
e high a: typical 6y (vom the prioy Will be uniform
e small a: a typical Oy (from the priony Will be sparse

a =100 a=10 a=1 a=0.1 a=0.01

8 8 8 8 8

TITITIITL atretlntls .Hm.m {M ..............

o Likewise, 1 controls the shape and sparsity of the Bx’s (the topics - distribution

over words)
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LDA: Generative Process

The model is described by the following generative process:

3 Interpretation of 1: psuedocount of vocabulary words observed across prior topics.

Interpretation of «: psuedocount of topics observed across prior documents
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LDA: Generative Process

The model is described by the following generative process:
e Fix a vocabulary of V words, and set the number of topics, K.
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LDA: Generative Process

The model is described by the following generative process:

e Fix a vocabulary of V words, and set the number of topics, K.
e Set hyperparameters € RV, o € RK.
e For k in (1, K):

o Define the topic (a distribution over words), B € RY ~ Dir(n).3
e Fordin(1,D):

o Choose (per-document) topic proportions 04 € RK ~ Dir(a).*

e For nin (1, Ny):
e Choose the topic assignment z, , ~ Categorical, (04)
e Choose word wy , ~ Categoricaly/ (5., )

Interpretation of 7): psuedocount of vocabulary words observed across prior topics.

Interpretation of «: psuedocount of topics observed across prior documents
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LDA as a graphical model

Proportions t _Per-word t

parameter opic assignmen
Per-document Observed i Topic
topic proportions word Topics  parameter

N
OFOTO—@—H OO

« 0o | Zin Win Bk n
N
D K
Recall:

o Nodes are random variables.

e Shaded nodes are observed.

e Plates indicate replicated variables.

e Each node is conditionally independent from its non-descendants given its parents. 60



Joint distribution

Proportions ' _Per-word t

parameter opic assignmen
Per-document Observed . Topic
topic proportions word Topics  parameter

I
O+OFO-@—H0—+0

@ 04 Zan Wan N B n
D K

K
p(z,0,w,B | c,m)=]]p ﬁkln)H edla)Hp(zdn|ed)p(w“|zdmﬂk)
Categorical

k—1 Dirichlet Dirichlet |, "1  Categorical
(10)
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Joint distribution

Proportions ' _Per-word t

parameter opic assignmen
Per-document Observed . Topic
topic proportions word Topics  parameter

I
O+OFO-@—H0—+0

@ 04 Zan Wan N B n
D K

K
p(z,0,w,B | c,m)=]]p ﬁkln)H edla)Hp(zdn|ed)p(w“|zdmﬂk)
Categorical

k—1 Dirichlet . Dirichlet |, "1  Categorical
(10)

Remark. Note that LDA is a “bag-of-words” model; i.e. the probability of a word (or document) is invariant to word order.

61



Variational distribution

We approximate the posterior p(€ | z, w) using mean field variational
inference (8). In particular, we assume that the variational family Q has
a density which factorizes as

q = qs(0) g-(2)
Ny

= [T 95(6a) IT 9-.(za.0) (11)

d=1 Dirichlet B=l Categorical

Note We are treating the topics 3 as a constant for simplicity. For a fuller treatment, see Blei, D. M., Ng, A. Y., & Jordan, M. I.
(2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
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Update equations

LDA coordinate ascent update equations

Ng
0d k = o + E Td,n,k (12)
var. dirichlet (topic proportion) prior counts .74 var. expected assignment
Td,n,k X €xp {qu(e) [|Og 0d,k:| } 5k,[wd,n]
var. categorical (topic assigment) likelihood

var. "prior”  topic assignment

— (V00 -¥EH) Supuen (1)

where W(.) is the first derivative of the log " function.

e Derivable via VBEM (see notes).
e Characteristic form: latent variable update depends on the data,
global parameter update depends on the latent variable
Note We are treating 3 as a constant for brevity. We could fit also 3 to the data via VEM. (VEM does " empirical Bayes” for you.) More

generally, we could model 3 as a random variable with VBEM. For a fuller treatment, see Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003)
Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
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The role of analytical computations

The varational categorical update crucially hinges on facts about the

exponential family.
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The role of analytical computations

The varational categorical update crucially hinges on facts about the
exponential family.

In particular, the meat of the proof of the variational categorical update
depends crucially on the fact that the Dirichlet of a single probability
component is given by

Egs(0) [Iog 9,} =V(5) - WD _ ) (14)

where W(-) is the first derivative of the log I function. i fact is justiied via facts about
the exponential family (such as that the derivative of the log normalization factor with respect to the natural parameter is equal to the

sufficient statistic).
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The role of analytical computations

The varational categorical update crucially hinges on facts about the
exponential family.

In particular, the meat of the proof of the variational categorical update
depends crucially on the fact that the Dirichlet of a single probability
component is given by

Egs(0) [Iog 9,} =V(5) - WD _ ) (14)

where W(-) is the first derivative of the log I function. i fact is justiied via facts about
the exponential family (such as that the derivative of the log normalization factor with respect to the natural parameter is equal to the

sufficient statistic).

For many more complicated models (e.g. VAE), such expectations (een the
variational ones) @re€ intractable, and so we won't be able to use CAVI.
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LDA Example Inference

e Data: 17K Science documents from 1990-2000 ( 11M words, 20K unique terms)
e Model: 100-topic LDA model, fit using variational inference

1

2 3 4 5
dn protein water says mantle
ene cell climate researchers high
sequence cells atmospheric new earth
enes proteins temperature university pressure
sequences receptor global just seismic
human fig surface science crust
genome binding ocean lice temperature
genetic activity rbon work earths
analysis activation atmosphere st lower
two kinase changes years carthauakes
6 7 8 9 10
en? ime materials dna [ disease |
article data surface rna cancer
start wo i transcription patients
science model structure protein human
readers Ll tamperaure site gene
service e mocus binding medical
news hotest sequence studies
card proteins dng
circle - " specific normal
letters soquences drugs
1 12 13 14 15
years species protein cel space
million evolution structure cel solar
population proteins virus observations
evolutionary two hiv
university university amino infection stars
north populations binding immune university
early natural acid human mass.

g sues residues antigen
evidence oenetc molecular infected ‘astronomers
record ey siuctural viral oiscopa
16 17 18 19 20

cells energy research neurons
manager cell electron science brain
science gene state natonal cells
aaas n light scintic activity
advertising expression quantum sclnists fig
sales development physics new channels
member mutant electrons s university
recruitment mice high corex
associate g laser nouronal
biokogy. magnetic visual 65




Application: Anomaly Detection in Network Traffic Traces

LDA can be applied to documents that can be just about anything!

IP Addresses

An ip address, like 72.194.113.177, is (roughly) an address assigned to
each device connected to the Internet. My laptop has one, my iphone
has one, every website (Google, Apple, etc.) has one, etc.

One appllcatlon (Newton, B. D. (2012). Anomaly Detection in Network Traffic Traces Using Latent Dirichlet Allocation.)

e "“"Documents” = the session of a specific IP address

e “words" = the full external IP address and port number
combinations.

e The "words” in each “document” are counted and then this data set
is processed by LDA to yield a compact model of the data.

Q: Ok, but how to perform anomaly detection? Q: What assumptions are being made by LDA?
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| analyzed each of the anomalies detected in the last half hour
of the trace [...]. The second anomaly with nearly 300 thou-
sand messages exchanged with an SMTP server, is a bit more
troubling. It is possible that this was actually a malicious client
participating in a Mailbomb attack. According to the DARPA
Intrusion Detection Attacks Database [8] a Mailbomb attack “is
one in which the attacker sends many messages to a server, over-
flowing that server’s mail queue and possibly causing a system

failure.”

67



Automatic Differentiation
Variational Inference (ADVI)
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Coordinate ascent, and its discontents

The ELBO (Evidence Lower Bound): Parametric View

L(A) =Eq,(2) [ log p(x, z) — log q(Z)]
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Coordinate ascent, and its discontents

The ELBO (Evidence Lower Bound): Parametric View

L(A) =Eq,(2) [ log p(x, z) — log q(Z)]

Traditionally, we optimize via coordinate-ascent (CAVI).

Xt+1 = Xt + ptVL()/\\t)
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Coordinate ascent, and its discontents

The ELBO (Evidence Lower Bound): Parametric View

L(A) = Eq,(2) [log p(x, z) — log q(Z)]

Traditionally, we optimize via coordinate-ascent (CAVI).

Xf+l = /)\\t + [)tVL(Xt)

Requires model-specific computations

Must pick a good gq.

5if it exists

69



Differentiable Probability Models

GoAL: Approximate the posterior p(6 | x) x p(x | 8)p(0)
The class of probability models that ADVI supports

e Dataset x = x;.y Where each x, is a realization of a discrete or
continuous random variable

e Latent variables @ are continuous

e Vylogp(x,8) exists within the support of the prior

© :=supp(p(0)) = {6 | 6 € RX and p(8) > 0} C R

INCLUDES EXCLUDES

Generalized linear models Ising model

Mixture models Sigmoid belief networks

Topic models Bayesian nonparametric models

Linear dynamic systems
Gaussian process models
Deep exponential families %



Step 1: Transforming to unbounded support

We define a differentiable bijection to give the parameters unbounded support.
T:0 R
0—C

We use change of variables to express the joint density in the new space.

p(x.¢) = p(x, T(¢))

new space

det J7—1 (c)‘

transformed original space

So in the new space, the ELBO becomes

L(A) =Eqciny | logp(x, T-(C)) + log

det JT1(C)‘ } + Hq(¢; V)
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T:0 R
0 C

We use change of variables to express the joint density in the new space.
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So in the new space, the ELBO becomes
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X Cannot compute the gradient of
Model-independent variational factors. the cost function
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Step 1: Transforming to unbounded support

We define a differentiable bijection to give the parameters unbounded support.
T:0 R
0 C

We use change of variables to express the joint density in the new space.

p(x.8) = p(x T-1(C)) detJrl(C)‘

transformed original space

So in the new space, the ELBO becomes

LX) =Eqcny | logp(x, T7H(C)) + log

detJTl(c)‘ } + H[q(¢; )]

X Cannot compute the gradient of
Model-independent variational factors. the cost function (Think: Why can't we just

approximate the term by sampling?)
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Step 2: The reparameterization trick

Example: We can re-parameterize the Gaussian ¢ ~ N (p, ), such that
its dependence on the original parameter A = (u, X) is transferred to a
(deterministic) standardization function, Sx

e Factorize ¥ = LL".
e The standardized random variable is

€:=5Sx(¢)=LY¢ —p), where e~ N(0,1)
e The unstandardized random variable can be recovered via
¢=55"(e)
ADVI ELBO

L(A) = Enr(en,n [Iogp(x, Tfl(S;l(e))> +log | det J,—1 (S5 '(€))

} + Hlg(¢; )]
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Step 2: The reparameterization trick

Example: We can re-parameterize the Gaussian ¢ ~ N (p, ), such that
its dependence on the original parameter A = (u, X) is transferred to a
(deterministic) standardization function, Sx

e Factorize ¥ = LL".
e The standardized random variable is

€:=5Sx(¢)=LY¢ —p), where e~ N(0,1)
e The unstandardized random variable can be recovered via
¢=55"(e)
ADVI ELBO

L(A) = Enr(en,n [Iogp(x, Tfl(S;l(e))> +log | det J,—1 (S5 '(€))

} + Hlg(¢; )]

. . Can estimate the gradient of the
Model-independent variational factors. . &
expectation.
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Inference can be substantially more efficient

2
g 0
(]
& —200
&
S 400 |
% . ADV]
g —600 [~°°=oommmEEEmE = = = NUTS
> I il
L < 10! 102 103 10

Seconds

Results with a non-negative matrix factorization model applied to the
Frey Faces dataset.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017). Automatic differentiation variational inference. The Journal
of Machine Learning Research, 18(1), 430-474
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Questions?
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