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Bayesian approaches

• Typically contrasted with frequentist approaches

• Treat parameters as uncertain, data as fixed
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Bayes’ Rule

Bayes’ Rule

p(θ|x)
posterior

=

p(x |θ)
likelihood

p(θ)
prior

p(x)
evidence

=
p(x |θ)p(θ)∫
p(x |θ)p(θ) dθ

Posterior
The posterior distribution is proportional to the prior times the likelihood:

p(θ|x) ∝ p(x |θ)p(θ)

The posterior distribution is a distribution over θ.

Evidence
The evidence, or marginal likelihood, can be used for model comparison.
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Motivations

Avoiding overfitting
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Maximum likelihood and overfitting

Maximum likelihood can have problems with over-fitting.

The approach can be seen as over-committing to a single, fixed

parameter value.

Bayesian methods can correct this by treating parameters as random

variables.
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Bayesian estimation of batting averages

Let

• x be observed data (batting average after n at bats)

• θ be parameters (a player’s ‘true‘ batting average)

Observed data (x)

E[
p

(θ
|X

)]
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Bayesian Occam’s Razor

Maximum Likelihood (ML) solutions tend to overfit. Bayesian marginalization reduces overfitting.

Models y = f (x)+ε of various complexity (poly-

nomials of various order, M) were fit to 8 data points

sampled from a quadratic model.

• Plotted are ML polynomials (least squares

fits to the data under Gaussian noise) and

posterior samples from a Bayesian

model (which used a Gaussian prior for the

coefficients, and an inverse gamma prior on the noise).

• How would you compare them?

The

ML estimate can look very different

from a typical sample from the

posterior!

The evidence is plotted as a function of model

order. Model orders M=0 to M=3 have con-

siderably higher evidence than other model or-

ders. We see that Bayesian marginalization has

reduced overfitting. (The maximum likelihood

model, the M = 7 model, fits the data per-

fectly, but overfits wildly, predicting the func-

tion will shoot up or down between neighboring

data points.)

Ghahramani, Z. (2013). Bayesian non-parametrics and the probabilistic approach to modelling. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 371(1984), 20110553.
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Bayesian Occam’s Razor

Competing probabilistic models correspond to alternative distributions over the datasets. Here, we

have illustrated three possible models that spread their probability mass in different ways over

these possible datasets. A complex model (shown in blue) spreads its mass over many more

possible datasets, whereas a simple model (shown in green) concentrates its mass on a smaller

fraction of possible data. Because probabilities have to sum to one, the complex model spreads its

mass at the cost of not being able to model simple datasets as well as a simple model—this

normalization is what results in an automatic Occam razor. Given any particular dataset, here

indicated by the dotted line, we can use the marginal likelihood to reject both overly simple

models, and overly complex models.

Ghahramani, Z. (2013). Bayesian non-parametrics and the probabilistic approach to modelling. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 371(1984), 20110553.
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Motivations

Estimating the probability of a rare

event
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Description of problem

• Want to estimate the prevalence of an infectious disease in a small

town.

• The higher the prevalence, the more public health precautions will

be recommended.

• A small random sample of 20 individuals are checked for infection.
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Description of problem

• Parameter θ, the fraction of infected individuals in the city.

• Parameter space: Θ = [0, 1]

• Sample: Y the number of infected individuals in the sample

• Sample space: Y = {0, 1, ..., 20}

14



Sampling model

If the value of θ were known, a reasonable sampling model for Y would be

Y | θ ∼ Binomial(20, θ)

Figure 1: Binomial(20, θ) distributons for three values of θ.
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Prior distribution

Other studies from various parts of the country indicate that the infection

rate in comparable cities range from about 0.05 to 0.20, with an average

prevalence of 0.10.

This suggests we use a prior distribution p(θ) that assigns a substantial

amount of probability to the interval (0.05, 0.20).

We can encode this prior information using

θ ∼ Beta(2, 20)
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From prior to posterior

Suppose Y = 0. How should we update our beliefs about θ?

Prior

θ ∼ Beta(2, 20)

E[θ] = 0.09

mode[θ] = 0.05

P(θ < 0.10) = 0.64

Posterior

θ | {Y = 0} ∼ Beta(4, 20)

E[θ | {Y = 0}] = 0.048

mode[θ | {Y = 0}] = 0.025

P(θ < 0.10 | {Y = 0}) = 0.93
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Sensitivity analysis

Suppose we consider beliefs represented by Beta(a, b) distributions for

(a, b) other than (2, 20).

If θ ∼ Beta(a, b), then θ | Y = y ∼ Beta(a + y , b + n − y).

The posterior expectation is

E[θ | Y = y ] =
a + y

a + b + n

=
n

a + b + n

y

n
+

a + b

a + b + n

a

a + b

=
n

w + n
ȳ +

w

w + n
θ0

where θ0 = a/(a + b) is the prior expectation of θ and w = a + b.

Interpretation? The posterior expectation is a compromise between the

prior expectation θ0 and sample mean ȳ . The weights on each depend on

the sample size, n, and our prior confidence in this guess, w .

18



Sensitivity analysis

Suppose we consider beliefs represented by Beta(a, b) distributions for

(a, b) other than (2, 20).

If θ ∼ Beta(a, b), then θ | Y = y ∼ Beta(a + y , b + n − y).

The posterior expectation is

E[θ | Y = y ] =
a + y

a + b + n

=
n

a + b + n

y

n
+

a + b

a + b + n

a

a + b

=
n

w + n
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the sample size, n, and our prior confidence in this guess, w .
18



Sensitivity analysis

If someone provides us with a prior guess θ0 and degree of confidence w ,

then we can approximate their prior beliefs about θ with

Beta

(
a = wθ0, b = w(1− θ0)

)
And their posterior beliefs are represented with

Beta

(
a = wθ0 + y , b = w(1− θ0) + n − y

)

We can compute such a posterior distribution for a wide range of θ0 and

w values to perform a sensitivity analysis, an exploration of how posterior

information is affected by differences in prior opinion.
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Sensitivity analysis

The second plot may be of use if, e.g., city officials would like to

recommend a vaccine to the general public unless they were reasonably

sure the current infection rate was less than 0.10.

A high degree of certainty (say 97.5%) is only achieved by people who already thought the

infection rate was lower than the average of other cities.
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Comparison to non-Bayesian methods

A 95% confidence interval for population proportion θ is the Wald

interval, given by

ȳ ± 1.96
√

ȳ(1− ȳ)/n

The interval has correct asymptotic frequentist coverage, meaning that if

n is large, then with probability approximately equal to 95%, Y will take

on a value y such that the above interval contains θ.

For our sample in which ȳ = 0, the Wald confidence interval comes out

to be just a single point: 0.

In fact, the 99.99% Wald interval also comes out to be zero.
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Comparison to non-Bayesian methods

People have suggested alternatives to avoid this type of behavior.

The “adjusted” Wald interval suggested by Agresti and Coull (1998) is

given by

θ̂ ± 1.96

√
θ̂(1− θ̂)/n, where

θ̂ =
n

n + 4
ȳ +

4

n + 4

1

2

While not motivated as such, the interval is clearly related to Bayesian

inference: θ̂ is equivalent to the posterior mean for θ under a Beta(2, 2)

prior, which represents weak prior information centered around θ = 1/2.
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Comparison to non-Bayesian methods

Compared to the post-hoc “adjustment” approach, the Bayesian

formalism provides

• Reasonable conclusions which fall naturally out of the framework

• Flexibility to other choice of priors than Beta(2, 2)

• Sensitivity analysis to consider the sets of conclusions that would be

reached by people with different priors.

• Simultaneous access to various functionals of the posterior – not just

E[θ | Y = y ] but also P[θ < 0.10 | Y = 0].
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Extensions: Hierarchical models

• Hierarchical models use “surrounding data” as a prior in a more

formal way.

• In Hoff’s disease prevalence example, we constructed our beta prior

manually, by taking a couple of basic facts about similar towns and

then converting that into beta parameters.

• A hierarchical model could let the prior expectation be tied more

exactly to those surrounding towns. We can automatically set the

strength of the prior expectation according to the relative

uncertainty within and between towns, and to automatically adapt

as data rolls in.

• Hierarchical regressions allow the prior expectation to be more

strongly influenced by towns that are similar w.r.t. relevant

characteristics, such as size, SES, etc
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Conclusion
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Summary

What are some advantages of the Bayesian approach?

• Reduces overfitting

• Automatic complexity control

• Exploits prior knowledge (previous results, reasonable values of data, etc.)

• Immediate access to many inferential quantities of inference

• Natural (and more flexible) solutions to frequentist problems:

(adjustments to confidence intervals, regularization, etc.)

• Can be easier in practice to extend to more complex models
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Utility for large datasets

• Still useful for larger models

• Especially complex models – what really matters is the information

we get about a given parameter.

A big dataset is just a bunch of small datasets

• Example: biometric profiling. (A given bigram may be rare to type, but in the end, you’re typing some

rare bigram a high percentage of the time!)
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